論文の概要: PDE Control Gym: A Benchmark for Data-Driven Boundary Control of Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2405.11401v1
- Date: Sat, 18 May 2024 22:01:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 17:59:18.185318
- Title: PDE Control Gym: A Benchmark for Data-Driven Boundary Control of Partial Differential Equations
- Title(参考訳): PDE Control Gym:部分微分方程式のデータ駆動境界制御ベンチマーク
- Authors: Luke Bhan, Yuexin Bian, Miroslav Krstic, Yuanyuan Shi,
- Abstract要約: PDEのバウンダリ制御のための学習環境を初めて提示する。
本稿では,この一連のベンチマーク問題を解決するためのモデルフリー強化学習アルゴリズムについて紹介する。
- 参考スコア(独自算出の注目度): 3.0248879829045388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the last decade, data-driven methods have surged in popularity, emerging as valuable tools for control theory. As such, neural network approximations of control feedback laws, system dynamics, and even Lyapunov functions have attracted growing attention. With the ascent of learning based control, the need for accurate, fast, and easy-to-use benchmarks has increased. In this work, we present the first learning-based environment for boundary control of PDEs. In our benchmark, we introduce three foundational PDE problems - a 1D transport PDE, a 1D reaction-diffusion PDE, and a 2D Navier-Stokes PDE - whose solvers are bundled in an user-friendly reinforcement learning gym. With this gym, we then present the first set of model-free, reinforcement learning algorithms for solving this series of benchmark problems, achieving stability, although at a higher cost compared to model-based PDE backstepping. With the set of benchmark environments and detailed examples, this work significantly lowers the barrier to entry for learning-based PDE control - a topic largely unexplored by the data-driven control community. The entire benchmark is available on Github along with detailed documentation and the presented reinforcement learning models are open sourced.
- Abstract(参考訳): 過去10年間で、データ駆動の手法が人気を博し、制御理論の貴重なツールとして登場した。
このように、制御フィードバック法則、システムダイナミクス、さらにはリャプノフ関数のニューラルネットワーク近似が注目されている。
学習ベースのコントロールの増加に伴い、正確で高速で使いやすいベンチマークの必要性が高まっている。
本研究では,PDEの境界制御のための学習環境を初めて提示する。
本ベンチマークでは, 1DトランスポートPDE, 1Dリアクション拡散PDE, 2D Navier-StokesPDEの3つの基礎的PDE問題を紹介する。
このジムでは、モデルベースのPDEバックステッピングよりも高いコストで、この一連のベンチマーク問題を解決するための、モデルフリーで強化された学習アルゴリズムを提示する。
一連のベンチマーク環境と詳細な例によって、この研究は、学習ベースのPDEコントロールの参入障壁を著しく低下させます。
ベンチマーク全体はGithubで、詳細なドキュメントと、提示された強化学習モデルがオープンソースとして公開されている。
関連論文リスト
- Interpretable and Efficient Data-driven Discovery and Control of Distributed Systems [1.5195865840919498]
強化学習(Reinforcement Learning, RL)は、高次元非線形力学を持つシステムにおいて、有望な制御パラダイムとして登場した。
PDE制御のためのデータ効率,解釈可能,スケーラブルなフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-06T18:26:19Z) - Active Learning for Neural PDE Solvers [18.665448858377694]
Active Learningは、モデルをより小さなトレーニングセットで同じ精度でサロゲートするのに役立ちます。
モジュール型かつアクティブな学習ベンチマークであるAL4PDEを紹介する。
ALは,ランダムサンプリングと比較して平均誤差を最大71%削減することを示した。
論文 参考訳(メタデータ) (2024-08-02T18:48:58Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training [87.90342423839876]
我々は,PDEデータに対するより安定的で効率的な事前学習を可能にする,自己回帰型事前学習戦略を提案する。
我々は,100k以上の軌道を持つ10以上のPDEデータセットに対して,最大0.5BパラメータでPDEファンデーションモデルをトレーニングする。
論文 参考訳(メタデータ) (2024-03-06T08:38:34Z) - Adaptive Neural-Operator Backstepping Control of a Benchmark Hyperbolic
PDE [3.3044728148521623]
適応型PDE制御におけるNOsの適用に関する最初の結果を示し, 再循環を伴うベンチマーク1次元双曲型PDEを提案する。
また,安定性を示す数値シミュレーションを行い,最大3桁のスピードアップを観測する。
論文 参考訳(メタデータ) (2024-01-15T17:52:15Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - PDE+: Enhancing Generalization via PDE with Adaptive Distributional
Diffusion [66.95761172711073]
ニューラルネットワークの一般化は、機械学習における中心的な課題です。
本稿では、入力データを調整することに集中するのではなく、ニューラルネットワークの基盤機能を直接拡張することを提案する。
私たちはこの理論的フレームワークを、$textbfPDE+$$textbfPDE$ with $textbfA$daptive $textbfD$istributional $textbfD$iffusionとして実践しました。
論文 参考訳(メタデータ) (2023-05-25T08:23:26Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - Solving PDE-constrained Control Problems Using Operator Learning [14.30832827446317]
特殊正規化器を用いたPDE解演算子に対するサロゲートモデルを導入する。
私たちのフレームワークは、データ駆動とデータフリーの両方のケースに適用できます。
論文 参考訳(メタデータ) (2021-11-09T03:41:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。