論文の概要: Interpretable and Efficient Data-driven Discovery and Control of Distributed Systems
- arxiv url: http://arxiv.org/abs/2411.04098v1
- Date: Wed, 06 Nov 2024 18:26:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:22:00.063052
- Title: Interpretable and Efficient Data-driven Discovery and Control of Distributed Systems
- Title(参考訳): 分散システムの解釈可能かつ効率的なデータ駆動探索と制御
- Authors: Florian Wolf, Nicolò Botteghi, Urban Fasel, Andrea Manzoni,
- Abstract要約: 強化学習(Reinforcement Learning, RL)は、高次元非線形力学を持つシステムにおいて、有望な制御パラダイムとして登場した。
PDE制御のためのデータ効率,解釈可能,スケーラブルなフレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.5195865840919498
- License:
- Abstract: Effectively controlling systems governed by Partial Differential Equations (PDEs) is crucial in several fields of Applied Sciences and Engineering. These systems usually yield significant challenges to conventional control schemes due to their nonlinear dynamics, partial observability, high-dimensionality once discretized, distributed nature, and the requirement for low-latency feedback control. Reinforcement Learning (RL), particularly Deep RL (DRL), has recently emerged as a promising control paradigm for such systems, demonstrating exceptional capabilities in managing high-dimensional, nonlinear dynamics. However, DRL faces challenges including sample inefficiency, robustness issues, and an overall lack of interpretability. To address these issues, we propose a data-efficient, interpretable, and scalable Dyna-style Model-Based RL framework for PDE control, combining the Sparse Identification of Nonlinear Dynamics with Control (SINDy-C) algorithm and an autoencoder (AE) framework for the sake of dimensionality reduction of PDE states and actions. This novel approach enables fast rollouts, reducing the need for extensive environment interactions, and provides an interpretable latent space representation of the PDE forward dynamics. We validate our method on two PDE problems describing fluid flows - namely, the 1D Burgers equation and 2D Navier-Stokes equations - comparing it against a model-free baseline, and carrying out an extensive analysis of the learned dynamics.
- Abstract(参考訳): 部分微分方程式(PDE)が支配するシステムを効果的に制御することは、応用科学と工学のいくつかの分野において重要である。
これらのシステムは通常、非線形力学、部分可観測性、離散化された高次元性、分散された性質、低遅延フィードバック制御の要求により、従来の制御方式に重大な課題をもたらす。
強化学習(Reinforcement Learning, RL)、特にDeep RL(DRL)は、近年、高次元の非線形力学を管理するための例外的な能力を示す、このようなシステムのための有望な制御パラダイムとして登場した。
しかし、DRLはサンプルの非効率性、堅牢性の問題、全体的な解釈可能性の欠如といった課題に直面している。
これらの問題に対処するため,PDE制御のためのデータ効率,解釈可能,スケーラブルなDyna-style Model-based RLフレームワークを提案し,非線形ダイナミクスと制御(SINDy-C)アルゴリズムのスパース同定と,PDE状態と動作の次元的低減を目的としたオートエンコーダ(AE)フレームワークを組み合わせた。
この新しいアプローチは、高速なロールアウトを可能にし、広範な環境相互作用の必要性を低減し、PDEフォワードダイナミクスの解釈可能な潜在空間表現を提供する。
本研究では,流れを記述する2つのPDE問題,すなわち1次元バーガース方程式と2次元ナビエ・ストークス方程式をモデルフリーベースラインと比較し,学習力学の広範な解析を行った。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Real-time optimal control of high-dimensional parametrized systems by deep learning-based reduced order models [3.5161229331588095]
複数のシナリオにおけるパラメタライズされたPDEの観点で記述されたシステムの迅速な制御のための,非侵襲的なディープラーニングベースリダクションオーダーモデリング(DL-ROM)手法を提案する。
i)データ生成、(ii)次元削減、および(iii)オフラインフェーズでのニューラルネットワークトレーニングの後、任意のシナリオにおいて、最適制御戦略をオンラインフェーズで迅速に検索することができる。
論文 参考訳(メタデータ) (2024-09-09T15:20:24Z) - Adversarial Learning for Neural PDE Solvers with Sparse Data [4.226449585713182]
本研究では,ロバストトレーニングのためのシステムモデル拡張(Systematic Model Augmentation for Robust Training)という,ニューラルネットワークPDEの普遍的学習戦略を紹介する。
モデルの弱点に挑戦し改善することに集中することにより、SMARTはデータスカース条件下でのトレーニング中の一般化エラーを低減する。
論文 参考訳(メタデータ) (2024-09-04T04:18:25Z) - SINDy-RL: Interpretable and Efficient Model-Based Reinforcement Learning [5.59265003686955]
SINDy-RLは,SINDyと深層強化学習を組み合わせたフレームワークである。
SINDy-RLは最先端のDRLアルゴリズムに匹敵する性能を達成する。
我々は,ベンチマーク制御環境と流体問題に対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-14T05:17:39Z) - Physics-constrained robust learning of open-form partial differential equations from limited and noisy data [1.50528618730365]
本研究では,自由形式偏微分方程式(PDE)を有限・雑音データから頑健に解明する枠組みを提案する。
ニューラルネットワークに基づく予測モデルは、システム応答に適合し、生成されたPDEに対する報酬評価器として機能する。
数値実験により, 非線形力学系から, 極めてノイズの多いデータで支配方程式を発見できることを示す。
論文 参考訳(メタデータ) (2023-09-14T12:34:42Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - Learning to Accelerate Partial Differential Equations via Latent Global
Evolution [64.72624347511498]
The Latent Evolution of PDEs (LE-PDE) is a simple, fast and scalable method to accelerate the simulation and inverse optimization of PDEs。
我々は,このような潜在力学を効果的に学習し,長期的安定性を確保するために,新たな学習目標を導入する。
更新対象の寸法が最大128倍、速度が最大15倍向上し、競争精度が向上した。
論文 参考訳(メタデータ) (2022-06-15T17:31:24Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
本稿では,スケーラブルな機械学習フレームワークである移動水平最適化(DySMHO)による動的システムの発見について紹介する。
DySMHOは、基底関数の大きな辞書から基礎となる支配方程式を逐次学習する。
標準非線形力学系の例は、DySMHOが規則を正確に回復できることを示すために用いられる。
論文 参考訳(メタデータ) (2021-07-30T20:35:03Z) - DeepReach: A Deep Learning Approach to High-Dimensional Reachability [6.604421202391151]
Hamilton-Jacobi (HJ) 到達可能性解析は動的制御系の性能と安全性を保証する重要な形式的検証手法である。
本稿では,高次元到達性問題に対するニューラルPDE解法であるDeepReachを提案する。
論文 参考訳(メタデータ) (2020-11-04T00:47:59Z) - Learning to Control PDEs with Differentiable Physics [102.36050646250871]
本稿では,ニューラルネットワークが長い時間をかけて複雑な非線形物理系の理解と制御を学べる新しい階層型予測器・相関器手法を提案する。
本手法は,複雑な物理系の理解に成功し,PDEに関わるタスクに対してそれらを制御できることを実証する。
論文 参考訳(メタデータ) (2020-01-21T11:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。