論文の概要: Oil & Water? Diffusion of AI Within and Across Scientific Fields
- arxiv url: http://arxiv.org/abs/2405.15828v1
- Date: Fri, 24 May 2024 00:39:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 02:29:48.166170
- Title: Oil & Water? Diffusion of AI Within and Across Scientific Fields
- Title(参考訳): 石油と水 : 科学分野におけるAIの拡散
- Authors: Eamon Duede, William Dolan, André Bauer, Ian Foster, Karim Lakhani,
- Abstract要約: 我々は、20の科学分野にわたる約8000万の研究出版物において、人工知能の普及に関する主張を調査する。
指数的成長を観察し,全分野にわたって約13倍(13倍)増加した。
このエンゲージメントの拡大は、あらゆる分野におけるより深い学際的な統合に向けた動きを示唆する一方で、増大するユビキティは、AIによる研究とより伝統的な学際的な研究の間の意味的な緊張と関係している。
- 参考スコア(独自算出の注目度): 1.4576074392895075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study empirically investigates claims of the increasing ubiquity of artificial intelligence (AI) within roughly 80 million research publications across 20 diverse scientific fields, by examining the change in scholarly engagement with AI from 1985 through 2022. We observe exponential growth, with AI-engaged publications increasing approximately thirteenfold (13x) across all fields, suggesting a dramatic shift from niche to mainstream. Moreover, we provide the first empirical examination of the distribution of AI-engaged publications across publication venues within individual fields, with results that reveal a broadening of AI engagement within disciplines. While this broadening engagement suggests a move toward greater disciplinary integration in every field, increased ubiquity is associated with a semantic tension between AI-engaged research and more traditional disciplinary research. Through an analysis of tens of millions of document embeddings, we observe a complex interplay between AI-engaged and non-AI-engaged research within and across fields, suggesting that increasing ubiquity is something of an oil-and-water phenomenon -- AI-engaged work is spreading out over fields, but not mixing well with non-AI-engaged work.
- Abstract(参考訳): この研究は、1985年から2022年までのAIとの学術的関わりの変化を調べることによって、20の科学分野にわたる約8000万の研究出版物において、人工知能(AI)の普遍性が増大しているという主張を実証的に調査する。
我々は指数的な成長を観察し、AIによる出版物は全分野にわたって約13倍(13倍)増加し、ニッチからメインストリームへの劇的なシフトを示唆している。
さらに、各分野の出版施設におけるAI活用出版物の配布に関する実証的研究を行い、学術分野におけるAI活用の拡充を図った。
このエンゲージメントの拡大は、あらゆる分野におけるより深い学際的な統合に向けた動きを示唆する一方で、増大するユビキティは、AIによる研究とより伝統的な学際的な研究の間の意味的な緊張と関係している。
数千万のドキュメント埋め込みの分析を通じて、フィールド内およびフィールド内におけるAIとAIを含まない研究の複雑な相互作用を観察し、ユビキティの増加は油と水の現象である、と示唆する。
関連論文リスト
- Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
今後数十年は、産業革命に匹敵する人類の転換点になるかもしれない。
10年前に立ち上げられたこのプロジェクトは、複数の専門分野の専門家による永続的な研究にコミットしている。
AI技術の短期的および長期的影響の両方に対処する、アクションのための10のレコメンデーションを提供します。
論文 参考訳(メタデータ) (2024-04-06T22:18:31Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
1960年には333の研究分野の14%がAIに関連していたが、1972年には全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
1960年には、333の研究分野の14%がAI(コンピュータ科学の多くの分野)に関連していたが、1972年までに全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
我々は、現在の急上昇の状況が異なっており、学際的AI応用が持続する可能性が高いと結論付けている。
論文 参考訳(メタデータ) (2023-06-15T14:08:07Z) - Quantifying the Benefit of Artificial Intelligence for Scientific Research [2.4700789675440524]
我々は、科学研究におけるAIの直接的な利用とAIの潜在的利益の両方を見積もる。
研究におけるAIの利用は科学に広く浸透しており、特に2015年以来急速に成長している。
我々の分析は、AIが多くの科学分野に利益をもたらす可能性があることを示しているが、AI教育とその研究応用の間には顕著な断絶がある。
論文 参考訳(メタデータ) (2023-04-17T08:08:50Z) - Researching Alignment Research: Unsupervised Analysis [14.699455652461726]
AIアライメント研究は、人工知能(AI)が人間に利益をもたらすことを保証することを目的としている。
このプロジェクトでは、既存のAIアライメント研究を収集、分析した。
フィールドは急速に成長しており、いくつかのサブフィールドが平行して出現している。
論文 参考訳(メタデータ) (2022-06-06T18:24:17Z) - Characterising Research Areas in the field of AI [68.8204255655161]
トピックの共起ネットワーク上でクラスタリング分析を行うことで,主要な概念テーマを特定した。
その結果は、ディープラーニングや機械学習、物のインターネットといった研究テーマに対する学術的関心の高まりを浮き彫りにしている。
論文 参考訳(メタデータ) (2022-05-26T16:30:30Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
本稿では、既存の文献の参加と現在の実践の実証分析を通じて、AI設計における「参加的転換」を掘り下げることを目的としている。
本稿では,本論文の文献合成と実証研究に基づいて,AI設計への参加的アプローチを解析するための概念的枠組みを提案する。
論文 参考訳(メタデータ) (2021-11-01T17:57:04Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z) - A narrowing of AI research? [0.0]
学術と民間におけるAI研究のテーマ的多様性の進化について研究する。
我々は、AI研究における民間企業の影響力を、彼らが受け取った引用と他の機関とのコラボレーションを通じて測定する。
論文 参考訳(メタデータ) (2020-09-22T08:23:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。