論文の概要: Infinite-dimensional Diffusion Bridge Simulation via Operator Learning
- arxiv url: http://arxiv.org/abs/2405.18353v3
- Date: Thu, 01 May 2025 13:47:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:51.785071
- Title: Infinite-dimensional Diffusion Bridge Simulation via Operator Learning
- Title(参考訳): 演算子学習による無限次元拡散ブリッジシミュレーション
- Authors: Gefan Yang, Elizabeth Louise Baker, Michael L. Severinsen, Christy Anna Hipsley, Stefan Sommer,
- Abstract要約: 本稿では,スコアマッチング手法と演算子学習を融合させて,無限次元橋梁の直接学習を可能にする手法を提案する。
クローズドフォーム解を用いた合成例から、実世界の生物学的形状データの非線形進化まで、一連の実験を行っている。
- 参考スコア(独自算出の注目度): 1.747623282473278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The diffusion bridge, which is a diffusion process conditioned on hitting a specific state within a finite period, has found broad applications in various scientific and engineering fields. However, simulating diffusion bridges for modeling natural data can be challenging due to both the intractability of the drift term and continuous representations of the data. Although several methods are available to simulate finite-dimensional diffusion bridges, infinite-dimensional cases remain under explored. This paper presents a method that merges score matching techniques with operator learning, enabling a direct approach to learn the infinite-dimensional bridge and achieving a discretization equivariant bridge simulation. We conduct a series of experiments, ranging from synthetic examples with closed-form solutions to the stochastic nonlinear evolution of real-world biological shape data. Our method demonstrates high efficacy, particularly due to its ability to adapt to any resolution without extra training.
- Abstract(参考訳): 拡散橋は、有限期間内に特定の状態に達することを条件とした拡散過程であり、様々な科学・工学分野に広く応用されている。
しかし、ドリフト項の難易度とデータの連続表現の両面から、自然データモデリングのための拡散ブリッジのシミュレーションは困難である。
有限次元拡散ブリッジをシミュレートする方法はいくつかあるが、無限次元の場合はまだ検討中である。
本稿では,スコアマッチング手法と演算子学習を融合させることにより,無限次元の橋梁を学習し,離散化同変ブリッジシミュレーションを実現する手法を提案する。
閉形式解を用いた合成例から、実世界の生体形状データの確率論的非線形進化まで、一連の実験を行っている。
提案手法は,特に余分な訓練を伴わずに任意の解像度に適応できるため,高い有効性を示す。
関連論文リスト
- Continual Multimodal Contrastive Learning [70.60542106731813]
マルチモーダル・コントラッシブ・ラーニング(MCL)は、異なるモーダルを整列させ、関節空間で多モーダル表現を生成する。
マルチモーダルデータは単一のプロセスで収集されることはめったになく、スクラッチからのトレーニングは計算コストがかかる。
本稿では, 安定性と塑性の2つの原理によりCMCLを定式化する。
理論的には、二辺から部分空間への勾配の更新を計画する、新しい最適化に基づく手法を導出する。
論文 参考訳(メタデータ) (2025-03-19T07:57:08Z) - Neural Guided Diffusion Bridges [2.048226951354646]
ユークリッド空間における条件付き拡散過程(拡散橋)をシミュレーションする新しい手法を提案する。
ニューラルネットワークをトレーニングして橋梁力学を近似することにより,計算集約型マルコフ・チェインモンテカルロ法(MCMC)の必要性を解消する。
論文 参考訳(メタデータ) (2025-02-17T15:28:19Z) - Bridging Geometric States via Geometric Diffusion Bridge [79.60212414973002]
本稿では,初期および対象の幾何状態を正確にブリッジする新しい生成モデリングフレームワークであるGeometric Diffusion Bridge (GDB)を紹介する。
GDBは、幾何学的状態の接続のためにDoobの$h$-transformの修正版から派生した同変拡散ブリッジを使用している。
我々はGDBが既存の最先端のアプローチを超越し、幾何学的状態を正確にブリッジするための新しい経路を開くことを示す。
論文 参考訳(メタデータ) (2024-10-31T17:59:53Z) - G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
本稿では,従来の離散拡散に基づく画像生成モデルを活用することによって,線形逆問題に対処する新しい手法を提案する。
我々の知る限りでは、これは画像逆問題を解決するために離散拡散モデルに基づく先行手法を使う最初のアプローチである。
論文 参考訳(メタデータ) (2024-10-09T06:18:25Z) - Stochastic Optimal Control for Diffusion Bridges in Function Spaces [13.544676987441441]
無限次元空間に合わせた最適制御の理論を提案する。
我々は、Doob の $h$-transform が SOC の観点から導出され、無限次元に拡張されることを示す。
2つの無限次元分布間のブリッジの学習と、無限次元分布からの標本化のための生成モデルを提案する。
論文 参考訳(メタデータ) (2024-05-31T05:42:47Z) - Reflected Schr\"odinger Bridge for Constrained Generative Modeling [16.72888494254555]
反射拡散モデルは、現実の応用における大規模生成モデルのゴートメソッドとなっている。
本稿では,様々な領域内でデータを生成するために最適化されたエントロピー規則化された最適輸送手法であるReflectioned Schrodinger Bridgeアルゴリズムを紹介する。
提案アルゴリズムは,多様な領域におけるロバストな生成モデリングを実現し,そのスケーラビリティは,標準画像ベンチマークによる実世界の制約付き生成モデリングにおいて実証される。
論文 参考訳(メタデータ) (2024-01-06T14:39:58Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
非自明な多様体上の高次元タスクにスケールできることを示す。
我々は、$SU(n)$格子上のQCD密度と高次元超球面上の対照的に学習された埋め込みをモデル化する。
論文 参考訳(メタデータ) (2023-10-30T21:27:53Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
本稿では,事前学習した拡散モデルのh空間における解釈可能な方向を特定するための,教師なしおよび学習に基づく最初の手法を提案する。
我々は、事前訓練された拡散モデルのh-スペースで動作するシフト制御モジュールを用いて、サンプルをシフトしたバージョンに操作する。
それらを共同で最適化することで、モデルは自然に絡み合った、解釈可能な方向を発見する。
論文 参考訳(メタデータ) (2023-10-15T18:44:30Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
一般多様体上に生成拡散過程を構築するための原理的枠組みを導入する。
従来の拡散モデルの認知的アプローチに従う代わりに、橋梁プロセスの混合を用いて拡散過程を構築する。
混合過程を幾何学的に理解し,データ点への接する方向の重み付け平均としてドリフトを導出する。
論文 参考訳(メタデータ) (2023-10-11T06:04:40Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Eliminating Lipschitz Singularities in Diffusion Models [51.806899946775076]
拡散モデルは、時間ステップの零点付近で無限のリプシッツをしばしば表すことを示す。
これは、積分演算に依存する拡散過程の安定性と精度に脅威をもたらす。
我々はE-TSDMと呼ばれる新しい手法を提案し、これは0に近い拡散モデルのリプシッツを除去する。
論文 参考訳(メタデータ) (2023-06-20T03:05:28Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
熱測地線埋め込みと呼ばれるより一般的な熱カーネルベースの多様体埋め込み法を提案する。
その結果,本手法は,地中真理多様体距離の保存において,既存の技術よりも優れていることがわかった。
また,連続体とクラスタ構造を併用した単一セルRNAシークエンシングデータセットに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-30T13:58:50Z) - Latent Traversals in Generative Models as Potential Flows [113.4232528843775]
我々は,学習された動的ポテンシャルランドスケープを持つ潜在構造をモデル化することを提案する。
物理、最適輸送、神経科学にインスパイアされたこれらの潜在的景観は、物理的に現実的な偏微分方程式として学習される。
本手法は,最先端のベースラインよりも定性的かつ定量的に歪んだ軌跡を実現する。
論文 参考訳(メタデータ) (2023-04-25T15:53:45Z) - Infinite-Dimensional Diffusion Models [4.342241136871849]
拡散に基づく生成モデルを無限次元で定式化し、関数の生成モデルに適用する。
我々の定式化は無限次元の設定においてよく成り立っていることを示し、サンプルから目標測度への次元非依存距離境界を提供する。
また,無限次元拡散モデルの設計ガイドラインも作成する。
論文 参考訳(メタデータ) (2023-02-20T18:00:38Z) - Dynamical chaos in nonlinear Schr\"odinger models with subquadratic
power nonlinearity [137.6408511310322]
ランダムポテンシャルと準4次パワー非線形性を持つ非線形シュリンガー格子のクラスを扱う。
拡散過程は亜拡散性であり, 微細構造が複雑であることを示す。
二次パワー非線形性の限界も議論され、非局在化境界をもたらすことが示されている。
論文 参考訳(メタデータ) (2023-01-20T16:45:36Z) - Simulating Diffusion Bridges with Score Matching [17.492131261495523]
まず,無条件拡散過程の時間反転が可能であれば,時間反転拡散ブリッジ法をシミュレートできることを示す。
次に、拡散ブリッジプロセスを定義するDoobの$h$-transformを近似するために、提案手法の別のイテレーションを検討する。
論文 参考訳(メタデータ) (2021-11-14T05:18:31Z) - Rectangular Flows for Manifold Learning [38.63646804834534]
正規化フローは、トラクタブル・オブ・ボリューム項を持つ可逆ニューラルネットワークである。
興味のあるデータは、通常、高次元の周囲空間に埋め込まれたいくつかの(しばしば未知の)低次元多様体に生きていると仮定される。
本稿では,モデルのパラメータに関して,この項の勾配を抽出可能な2つの手法を提案する。
論文 参考訳(メタデータ) (2021-06-02T18:30:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。