論文の概要: Highly Versatile FPGA-Implemented Cyber Coherent Ising Machine
- arxiv url: http://arxiv.org/abs/2406.05377v1
- Date: Sat, 8 Jun 2024 07:09:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 20:04:51.621689
- Title: Highly Versatile FPGA-Implemented Cyber Coherent Ising Machine
- Title(参考訳): FPGA実装サイバーコヒーレントイジングマシン
- Authors: Toru Aonishi, Tatsuya Nagasawa, Toshiyuki Koizumi, Mastiyage Don Sudeera Hasaranga Gunathilaka, Kazushi Mimura, Masato Okada, Satoshi Kako, Yoshihisa Yamamoto,
- Abstract要約: 我々はFPGAを実装したサイバーコヒーレントIsingマシン(サイバーCIM)を開発した。
我々のアーキテクチャは、CIM研究開始時に提案されたオープンループCIMをクローズループCIMに適用できるため、多用途である。
サイバーCIMは、初期のFPGAシステムでは不可能だったCDMAマルチユーザー検出器やL0圧縮センシングなどのアプリケーションを可能にする。
- 参考スコア(独自算出の注目度): 0.7950056272504447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, quantum Ising machines have drawn a lot of attention, but due to physical implementation constraints, it has been difficult to achieve dense coupling, such as full coupling with sufficient spins to handle practical large-scale applications. Consequently, classically computable equations have been derived from quantum master equations for these quantum Ising machines. Parallel implementations of these algorithms using FPGAs have been used to rapidly find solutions to these problems on a scale that is difficult to achieve in physical systems. We have developed an FPGA implemented cyber coherent Ising machine (cyber CIM) that is much more versatile than previous implementations using FPGAs. Our architecture is versatile since it can be applied to the open-loop CIM, which was proposed when CIM research began, to the closed-loop CIM, which has been used recently, as well as to Jacobi successive over-relaxation method. By modifying the sequence control code for the calculation control module, other algorithms such as Simulated Bifurcation (SB) can also be implemented. Earlier research on large-scale FPGA implementations of SB and CIM used binary or ternary discrete values for connections, whereas the cyber CIM used FP32 values. Also, the cyber CIM utilized Zeeman terms that were represented as FP32, which were not present in other large-scale FPGA systems. Our implementation with continuous interaction realizes N=4096 on a single FPGA, comparable to the single-FPGA implementation of SB with binary interactions, with N=4096. The cyber CIM enables applications such as CDMA multi-user detector and L0 compressed sensing which were not possible with earlier FPGA systems, while enabling superior calculation speeds, more than ten times faster than a GPU implementation. The calculation speed can be further improved by increasing parallelism, such as through clustering.
- Abstract(参考訳): 近年、量子イジングマシンは注目されているが、物理的な実装上の制約のため、実用的な大規模アプリケーションを扱うのに十分なスピンとの完全な結合のような密結合は困難である。
したがって、古典的に計算可能な方程式は、これらの量子イジングマシンの量子マスター方程式から導かれる。
FPGAを用いたこれらのアルゴリズムの並列実装は、物理システムでは達成が難しいスケールでこれらの問題の解を迅速に見つけるために使われてきた。
我々はFPGAを実装したサイバーコヒーレントIsingマシン(サイバーCIM)を開発した。
我々のアーキテクチャは、CIM研究開始時に提案されたオープンループCIMや、最近使われているクローズループCIM、そしてヤコビ連続オーバーラックス法に適用できるため、多用途である。
計算制御モジュールのシーケンス制御コードを変更することで、Simulated Bifurcation (SB)のような他のアルゴリズムも実装できる。
SBとCIMの大規模FPGA実装に関する以前の研究では、接続に2値または3値の離散値を使用していたが、サイバーCIMはFP32値を使用していた。
また、サイバーCIMは、他の大規模FPGAシステムには存在しないFP32として表現されたゼーマン語を利用した。
連続的相互作用を用いた実装では,N=4096を単一FPGA上で実現し,N=4096を用いたSBの単一FPGA実装に匹敵する結果を得た。
サイバーCIMは、従来のFPGAシステムでは不可能だったCDMAマルチユーザ検出器やL0圧縮センシングなどのアプリケーションを実現すると同時に、GPU実装の10倍以上の計算速度を実現している。
クラスタリングなどの並列性を高めて計算速度をさらに向上することができる。
関連論文リスト
- Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
本稿では,フィールドプログラマブルゲートアレイ(FPGA)ベースのアクセラレータを効率よく生成するアルゴリズムとハードウェアの共同設計フレームワークを提案する。
アルゴリズムレベルでは、計算とメモリのオーバーヘッドを低減した、新しいマルチエグジット・ドロップアウトベースのベイズNNを提案する。
ハードウェアレベルでは,提案する効率的なベイズNNのためのFPGAベースのアクセラレータを生成するための変換フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-20T17:08:42Z) - Many-body computing on Field Programmable Gate Arrays [5.612626580467746]
我々は、量子多体計算を行うために、FPGA(Field Programmable Gate Arrays)の機能を利用する。
この結果、CPUベースの計算に比べて10倍のスピードアップを実現している。
論文 参考訳(メタデータ) (2024-02-09T14:01:02Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
エッジコンピューティングアプリケーション用に設計された低消費電力組み込みFPGAに基づく分散システムを提案する。
提案システムは,様々なニューラルネットワーク(NN)モデルを同時に実行し,パイプライン構造にグラフを配置し,NNグラフの最も計算集約的な層により大きなリソースを手動で割り当てる。
論文 参考訳(メタデータ) (2023-05-24T16:08:55Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
我々は、共設計ニューラルネットワーク(NN)のトレーニングと実装のためのエンドツーエンドワークフローを開発する。
これにより、ハードウェアにおける効率的なNN実装が、非専門家に、単一のオープンソースワークフローでアクセスできるようになる。
大型ハドロン衝突型加速器(LHC)の40MHz衝突速度で動作しなければならないトリガー決定を含む粒子物理学アプリケーションにおけるワークフローを実演する。
シミュレーションLHC陽子-陽子衝突における高速粒子ジェット用混合精度NNを実装した。
論文 参考訳(メタデータ) (2023-04-13T18:00:01Z) - LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy
Physics [45.666822327616046]
本研究は,粒子検出器のための低グラフニューラルネットワーク(LL-GNN)設計のための新しい再構成可能なアーキテクチャを提案する。
LL-GNNの設計は、洗練されたアルゴリズムが実験データを効率的に処理できるようにすることで、次世代のトリガーシステムを進化させる。
論文 参考訳(メタデータ) (2022-09-28T12:55:35Z) - Optimization of FPGA-based CNN Accelerators Using Metaheuristics [1.854931308524932]
畳み込みニューラルネットワーク(CNN)は、多くの分野における問題解決能力を実証している。
FPGAはCNN推論を加速する関心が高まっている。
FPGAベースのCNNアクセラレータの現在のトレンドは、複数の畳み込み層プロセッサ(CLP)を実装することである。
論文 参考訳(メタデータ) (2022-09-22T18:57:49Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
多くのAIタスクにおいて、注意に基づくニューラルネットワークが普及している。
注意機構とフィードフォワードネットワーク(FFN)の使用は、過剰な計算とメモリ資源を必要とする。
本稿では,注目機構とFFNの両方を近似するために,バタフライの分散パターンを統一したハードウェアフレンドリーな変種を提案する。
論文 参考訳(メタデータ) (2022-09-20T09:28:26Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Towards real-time and energy efficient Siamese tracking -- a
hardware-software approach [0.0]
我々は、よく知られた完全接続型シームズトラッカー(SiamFC)のハードウェア・ソフトウェア実装を提案する。
我々は、FINNアクセラレーターのための量子化シームズネットワークを開発し、アルゴリズム・加速器の共設計を用いて設計空間探索を行った。
我々のネットワークでは、Zynq UltraScale+MPSoC ZCU104のプログラム可能な論理部で動作し、約50フレーム/秒の処理を、その浮動小数点演算と同等の精度で達成した。
論文 参考訳(メタデータ) (2022-05-21T18:31:07Z) - Systolic-CNN: An OpenCL-defined Scalable Run-time-flexible FPGA
Accelerator Architecture for Accelerating Convolutional Neural Network
Inference in Cloud/Edge Computing [8.826181951806928]
Systolic-CNNはOpenCLで定義されたスケーラブルでランタイムフレキシブルなFPGAアクセラレータアーキテクチャである。
Systolic-CNNは、マルチテナントクラウド/エッジコンピューティングにおける様々な畳み込みニューラルネットワーク(CNN)の推論を高速化するために最適化されている。
論文 参考訳(メタデータ) (2020-12-06T03:53:11Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。