論文の概要: Diagonalization of large many-body Hamiltonians on a quantum processor
- arxiv url: http://arxiv.org/abs/2407.14431v2
- Date: Thu, 5 Sep 2024 05:36:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 02:06:01.170239
- Title: Diagonalization of large many-body Hamiltonians on a quantum processor
- Title(参考訳): 量子プロセッサによる大型多体ハミルトンの対角化
- Authors: Nobuyuki Yoshioka, Mirko Amico, William Kirby, Petar Jurcevic, Arkopal Dutt, Bryce Fuller, Shelly Garion, Holger Haas, Ikko Hamamura, Alexander Ivrii, Ritajit Majumdar, Zlatko Minev, Mario Motta, Bibek Pokharel, Pedro Rivero, Kunal Sharma, Christopher J. Wood, Ali Javadi-Abhari, Antonio Mezzacapo,
- Abstract要約: 超伝導量子プロセッサを用いて、最大56箇所の2次元格子上で量子多体系の固有エネルギーを計算する。
我々は、量子プロセッサ上で実行されるトロッター化されたユニタリ進化を用いて、多体ヒルベルト空間の部分空間を構築する。
- 参考スコア(独自算出の注目度): 28.65071920454694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The estimation of low energies of many-body systems is a cornerstone of computational quantum sciences. Variational quantum algorithms can be used to prepare ground states on pre-fault-tolerant quantum processors, but their lack of convergence guarantees and impractical number of cost function estimations prevent systematic scaling of experiments to large systems. Alternatives to variational approaches are needed for large-scale experiments on pre-fault-tolerant devices. Here, we use a superconducting quantum processor to compute eigenenergies of quantum many-body systems on two-dimensional lattices of up to 56 sites, using the Krylov quantum diagonalization algorithm, an analog of the well-known classical diagonalization technique. We construct subspaces of the many-body Hilbert space using Trotterized unitary evolutions executed on the quantum processor, and classically diagonalize many-body interacting Hamiltonians within those subspaces. These experiments show that quantum diagonalization algorithms are poised to complement their classical counterpart at the foundation of computational methods for quantum systems.
- Abstract(参考訳): マルチボディシステムの低エネルギー推定は、計算量子科学の基盤となっている。
変分量子アルゴリズムは、プリフォールト耐性量子プロセッサの基底状態を作成するのに使用できるが、収束保証の欠如とコスト関数推定の非現実的な数の欠如により、大規模なシステムへの実験の体系的なスケーリングが妨げられる。
プリフォールトトレラントデバイスに対する大規模な実験には、変分アプローチに代わる方法が必要である。
ここでは、超伝導量子プロセッサを用いて、56箇所の2次元格子上の量子多体系の固有エネルギーを計算し、よく知られた古典的対角化手法のアナログであるクリロフ量子対角化アルゴリズムを用いて計算する。
我々は、量子プロセッサ上で実行されるトロッター化ユニタリ進化を用いて、多体ヒルベルト空間の部分空間を構築し、これらの部分空間の中で相互作用する多体ハミルトン多様体を古典的に対角化する。
これらの実験により、量子対角化アルゴリズムは量子系の計算法の基礎において、古典的な対角化アルゴリズムを補完するものであることが示された。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
我々はこのプロトコルをバイアス場デジタルダイアバティック量子最適化(BF-DCQO)と呼ぶ。
私たちの純粋に量子的なアプローチは、古典的な変分量子アルゴリズムへの依存を排除します。
基底状態の成功確率のスケーリング改善を実現し、最大2桁まで増大する。
論文 参考訳(メタデータ) (2024-05-22T18:11:42Z) - Quantum computing topological invariants of two-dimensional quantum matter [0.0]
量子コンピュータ上で2次元量子物質のチャーン数を計算するための2つの量子回路を提案する。
まず,多くの量子ビットを用い,量子回路のテンソルネットワークシミュレータを用いて解析する。
第2の回路はより少ない量子ビットを使用し、超伝導量子ビットに基づく量子コンピュータで実験的に実装する。
論文 参考訳(メタデータ) (2024-04-09T06:22:50Z) - Entanglement Forging with generative neural network models [0.0]
ハイブリッド量子-古典的変分アンゼ」は、量子リソースオーバーヘッドを下げるために絡み合いを鍛えることができることを示す。
この方法は観測者の期待値の固定精度を達成するのに必要な測定値の数で効率的である。
論文 参考訳(メタデータ) (2022-05-02T14:29:17Z) - Simulating quantum circuits using the multi-scale entanglement
renormalization ansatz [0.0]
本稿では,中間サイズ量子回路の近似シミュレーションのためのスケーラブルな手法を提案する。
種々の深さを持つ27量子ビットのチェッカーボード型中間サイズ量子回路について,提案手法のベンチマークを行った。
論文 参考訳(メタデータ) (2021-12-28T09:05:01Z) - Expanding variational quantum eigensolvers to larger systems by dividing
the calculations between classical and quantum hardware [0.0]
限られた資源を持つ量子コンピュータ上で、多粒子ハミルトニアンの固有値問題を効率的に解くためのハイブリッド古典量子アルゴリズムを提案する。
このアルゴリズムは、より多くの量子評価を犠牲にして必要となる量子ビット数を減少させる。
論文 参考訳(メタデータ) (2021-12-09T17:37:41Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
大規模部分量子コヒーレント系の基本パラメータの無次元結合について論じる。
解析的および数値計算に基づいて、断熱進化中の量子ビット系に対して、そのような数を提案する。
論文 参考訳(メタデータ) (2021-08-30T23:50:05Z) - Advancing Hybrid Quantum-Classical Algorithms via Mean-Operators [0.30905468888217874]
量子多体系の絡み合いは将来の技術と科学の鍵となる概念である。
本稿では, ハイブリットアルゴリズムの利点と凝縮物質物理学における標準平均場理論を組み合わせることで, 限界を克服する理論を提案する。
論文 参考訳(メタデータ) (2021-07-15T18:00:04Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
想像時間における進化は、量子多体系の基底状態を見つけるための顕著な技術である。
本稿では,量子コンピュータ上での仮想時間伝搬を実現するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-24T12:48:00Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。