論文の概要: Physics-Informed Neural Networks with Unknown Partial Differential Equations: an Application in Multivariate Time Series
- arxiv url: http://arxiv.org/abs/2503.20144v1
- Date: Wed, 26 Mar 2025 01:24:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:18:14.102069
- Title: Physics-Informed Neural Networks with Unknown Partial Differential Equations: an Application in Multivariate Time Series
- Title(参考訳): 偏微分方程式を未知とする物理インフォームニューラルネットワークの多変量時系列への応用
- Authors: Seyedeh Azadeh Fallah Mortezanejad, Ruochen Wang, Ali Mohammad-Djafari,
- Abstract要約: この研究は、データ駆動型発見と物理誘導学習のギャップを埋めることを目的としている。
歴史的データから部分微分方程式を自動的に抽出する手法を提案する。
次に、これらの学習方程式を3つの異なるモデリングアプローチに統合する。
- 参考スコア(独自算出の注目度): 8.957579200590983
- License:
- Abstract: A significant advancement in Neural Network (NN) research is the integration of domain-specific knowledge through custom loss functions. This approach addresses a crucial challenge: how can models utilize physics or mathematical principles to enhance predictions when dealing with sparse, noisy, or incomplete data? Physics-Informed Neural Networks (PINNs) put this idea into practice by incorporating physical equations, such as Partial Differential Equations (PDEs), as soft constraints. This guidance helps the networks find solutions that align with established laws. Recently, researchers have expanded this framework to include Bayesian NNs (BNNs), which allow for uncertainty quantification while still adhering to physical principles. But what happens when the governing equations of a system are not known? In this work, we introduce methods to automatically extract PDEs from historical data. We then integrate these learned equations into three different modeling approaches: PINNs, Bayesian-PINNs (B-PINNs), and Bayesian Linear Regression (BLR). To assess these frameworks, we evaluate them on a real-world Multivariate Time Series (MTS) dataset. We compare their effectiveness in forecasting future states under different scenarios: with and without PDE constraints and accuracy considerations. This research aims to bridge the gap between data-driven discovery and physics-guided learning, providing valuable insights for practical applications.
- Abstract(参考訳): ニューラルネットワーク(NN)研究における重要な進歩は、カスタムロス関数によるドメイン固有の知識の統合である。
モデルはいかにして物理学や数学的原理を利用して、スパース、ノイズ、不完全データを扱う際の予測を強化することができるのか?
物理情報ニューラルネットワーク(PINN)は、偏微分方程式(PDE)などの物理方程式をソフト制約として組み込むことで、この考え方を実践した。
このガイダンスは、確立された法則に沿った解決策を見つけるのに役立ちます。
近年、研究者はこの枠組みをベイズNN(BNN)に拡張し、物理原理に固執しながら不確実な定量化を可能にした。
しかし、システムの統治方程式が分かっていないとどうなるのか?
本研究では,過去のデータからPDEを自動的に抽出する手法を提案する。
次に、これらの学習方程式を、PINN、Byyesian-PINN(B-PINN)、Byyesian Linear Regression(BLR)の3つの異なるモデリングアプローチに統合する。
これらのフレームワークを評価するために,実世界のマルチ変数時系列(MTS)データセットを用いて評価を行った。
我々は,PDE制約と精度を考慮した将来状態の予測におけるそれらの有効性を比較した。
この研究は、データ駆動探索と物理誘導学習のギャップを埋めることを目的としており、実用的な応用に有用な洞察を提供する。
関連論文リスト
- Nonlinear Schrödinger Network [0.8249694498830558]
ディープニューラルネットワーク(DNN)は、大規模データセットから複雑な非線形マッピングを学習することで、様々な分野において例外的なパフォーマンスを実現している。
これらの問題に対処するため、物理学とAIを統合するハイブリッドアプローチが注目されている。
本稿では,非線形シュリンガーネットワーク(Nonlinear Schr"odinger Network)と呼ばれる物理に基づく新しいAIモデルを紹介する。
論文 参考訳(メタデータ) (2024-07-19T17:58:00Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
グラフニューラルネットワーク(GNN)とラジアル基底関数有限差分(RBF-FD)に基づく新しいフレームワークを提案する。
RBF-FDはモデルトレーニングを導くために微分方程式の高精度差分形式を構築するために用いられる。
提案アルゴリズムの一般化可能性,精度,効率性を,異なるPDEパラメータで説明する。
論文 参考訳(メタデータ) (2022-12-06T10:08:02Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Physics informed deep learning for computational elastodynamics without
labeled data [13.084113582897965]
ラベル付きデータに頼らずにエラストダイナミックス問題をモデル化するために,混合可変出力を持つ物理インフォームドニューラルネットワーク(PINN)を提案する。
その結果,計算力学応用の文脈におけるPINNの有望性を示す。
論文 参考訳(メタデータ) (2020-06-10T19:05:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。