論文の概要: Symplectic Neural Networks Based on Dynamical Systems
- arxiv url: http://arxiv.org/abs/2408.09821v1
- Date: Mon, 19 Aug 2024 09:18:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 16:54:42.564361
- Title: Symplectic Neural Networks Based on Dynamical Systems
- Title(参考訳): 力学系に基づくシンプレクティックニューラルネットワーク
- Authors: Benjamin K Tapley,
- Abstract要約: 我々はハミルトン微分方程式の幾何に基づくシンプレクティックニューラルネットワーク(SympNets)のフレームワークを提案し,解析する。
SympNets はハミルトン微分同相空間の普遍近似子であり、解釈可能であり、非消滅性を持つ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present and analyze a framework for designing symplectic neural networks (SympNets) based on geometric integrators for Hamiltonian differential equations. The SympNets are universal approximators in the space of Hamiltonian diffeomorphisms, interpretable and have a non-vanishing gradient property. We also give a representation theory for linear systems, meaning the proposed P-SympNets can exactly parameterize any symplectic map corresponding to quadratic Hamiltonians. Extensive numerical tests demonstrate increased expressiveness and accuracy -- often several orders of magnitude better -- for lower training cost over existing architectures. Lastly, we show how to perform symbolic Hamiltonian regression with SympNets for polynomial systems using backward error analysis.
- Abstract(参考訳): ハミルトン微分方程式の幾何積分器に基づくシンプレクティックニューラルネットワーク(SympNets)を設計するためのフレームワークを提案し,解析する。
SympNets はハミルトン微分同相空間の普遍近似であり、解釈可能であり、非消滅勾配特性を持つ。
線形系に対する表現論も与え、つまり、提案されたP-SympNetsは二次ハミルトニアンに対応するシンプレクティック写像を正確にパラメータ化することができる。
大規模な数値テストでは、既存のアーキテクチャよりもトレーニングコストの削減のために、表現性と正確性(多くの場合、桁違いに優れている)が向上している。
最後に,逆誤差解析を用いた多項式系に対するシンプネットを用いたシンボリックハミルトン回帰法について述べる。
関連論文リスト
- Hamiltonian Matching for Symplectic Neural Integrators [9.786274281068815]
ハミルトンの運動方程式は、天文学、量子力学、粒子物理学、気候科学など、物理学の様々な分野における基本的な枠組みを形成している。古典的な数値解法は通常、これらの系の時間発展を計算するために用いられる。
パラメトリック時間依存ハミルトニアン関数の正確なフローマップの列を構成するニューラルネットワークに基づく新しいシンプレクティックインテグレータであるSympFlowを提案する。
論文 参考訳(メタデータ) (2024-10-23T20:21:56Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Applications of Machine Learning to Modelling and Analysing Dynamical
Systems [0.0]
本稿では,既存のハミルトンニューラルネットワーク構造を適応型シンプレクティックリカレントニューラルネットワークに組み合わせたアーキテクチャを提案する。
このアーキテクチャは、ハミルトニアン力学を予測する際に、これまで提案されていたニューラルネットワークよりも大幅に優れていた。
本手法は, 単一パラメータポテンシャルに対して有効であり, 長期間にわたって正確な予測を行うことができることを示す。
論文 参考訳(メタデータ) (2023-07-22T19:04:17Z) - Learning Trajectories of Hamiltonian Systems with Neural Networks [81.38804205212425]
本稿では,モデル系の連続時間軌跡を推定し,ハミルトニアンニューラルネットワークを強化することを提案する。
提案手法は, 低サンプリング率, ノイズ, 不規則な観測において, HNNに対して有効であることを示す。
論文 参考訳(メタデータ) (2022-04-11T13:25:45Z) - A unified framework for Hamiltonian deep neural networks [3.0934684265555052]
ディープニューラルネットワーク(DNN)のトレーニングは、重み付け最適化中に勾配を消耗させるため、難しい場合がある。
ハミルトン系の時間離散化から派生したDNNのクラスを提案する。
提案されたハミルトンのフレームワークは、限界的に安定なODEにインスパイアされた既存のネットワークを包含する以外に、新しいより表現力のあるアーキテクチャを導出することができる。
論文 参考訳(メタデータ) (2021-04-27T13:20:24Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Sparse Symplectically Integrated Neural Networks [15.191984347149667]
SSINN(Sprselectically Integrated Neural Networks)を紹介する。
SSINNはデータからハミルトン力学系を学ぶための新しいモデルである。
古典的ハミルトン力学問題に対するSSINNの評価を行う。
論文 参考訳(メタデータ) (2020-06-10T03:33:37Z) - SympNets: Intrinsic structure-preserving symplectic networks for
identifying Hamiltonian systems [2.6016814327894466]
線形, アクティベーション, 勾配モジュールからなるデータからハミルトン系を特定するための新しいシンプレクティックネットワーク(SympNets)を提案する。
具体的には、線形および活性化モジュールからなるLA-SympNetsと勾配モジュールからなるG-SympNetsの2つのクラスを定義する。
論文 参考訳(メタデータ) (2020-01-11T13:04:34Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
散乱変換は、畳み込みニューラルネットワークのモデルとして機能する多層ウェーブレットベースのディープラーニングアーキテクチャである。
非対称ウェーブレットの非常に一般的なクラスに基づくグラフに対して、窓付きおよび非窓付き幾何散乱変換を導入する。
これらの非対称グラフ散乱変換は、対称グラフ散乱変換と多くの理論的保証を持つことを示す。
論文 参考訳(メタデータ) (2019-11-14T17:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。