論文の概要: Fredholm Integral Equations Neural Operator (FIE-NO) for Data-Driven Boundary Value Problems
- arxiv url: http://arxiv.org/abs/2408.12389v1
- Date: Tue, 20 Aug 2024 00:15:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 13:43:10.620104
- Title: Fredholm Integral Equations Neural Operator (FIE-NO) for Data-Driven Boundary Value Problems
- Title(参考訳): データ駆動境界値問題に対するFredholm積分方程式ニューラル演算子(FIE-NO)
- Authors: Haoyang Jiang, Yongzhi Qu,
- Abstract要約: 本研究では,不規則な境界を持つ境界値問題(BVP)を解くための物理誘導型演算子学習法(FIE-NO)を提案する。
提案手法は,BVPに対処する上で,優れた性能を示す。
我々の手法は、未知の方程式形式や複雑な境界形状を含む複数のシナリオにまたがって一般化することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a novel Fredholm Integral Equation Neural Operator (FIE-NO) method, an integration of Random Fourier Features and Fredholm Integral Equations (FIE) into the deep learning framework, tailored for solving data-driven Boundary Value Problems (BVPs) with irregular boundaries. Unlike traditional computational approaches that struggle with the computational intensity and complexity of such problems, our method offers a robust, efficient, and accurate solution mechanism, using a physics inspired design of the learning structure. We demonstrate that the proposed physics-guided operator learning method (FIE-NO) achieves superior performance in addressing BVPs. Notably, our approach can generalize across multiple scenarios, including those with unknown equation forms and intricate boundary shapes, after being trained only on one boundary condition. Experimental validation demonstrates that the FIE-NO method performs well in simulated examples, including Darcy flow equation and typical partial differential equations such as the Laplace and Helmholtz equations. The proposed method exhibits robust performance across different boundary conditions. Experimental results indicate that FIE-NO achieves higher accuracy and stability compared to other methods when addressing complex boundary value problems with varying numbers of interior points.
- Abstract(参考訳): 本稿では,データ駆動境界値問題(BVP)を不規則境界で解くのに適した,新しいFredholm Integral Equation Neural Operator(FIE-NO)法,Random Fourier FeaturesとFredholm Integral Equations(FIE)をディープラーニングフレームワークに統合する。
このような問題の計算強度と複雑性に苦しむ従来の計算手法とは異なり、本手法は、物理にインスパイアされた学習構造の設計を用いて、堅牢で効率的で正確な解法機構を提供する。
本稿では,物理誘導型演算子学習法 (FIE-NO) がBVPに対処する上で優れた性能を発揮することを示す。
特に,1つの境界条件でのみ訓練した後,未知の方程式形式や複雑な境界形状を含む複数のシナリオにまたがって,本手法を一般化することができる。
FIE-NO法は、ダーシー方程式やラプラス方程式やヘルムホルツ方程式のような典型的な偏微分方程式を含むシミュレーション例でよく機能することを示した。
提案手法は, 異なる境界条件にまたがって頑健な性能を示す。
実験結果から,FIE-NOは内部点数が異なる複雑な境界値問題に対処する場合に比べて精度と安定性が向上することが示唆された。
関連論文リスト
- PINNIES: An Efficient Physics-Informed Neural Network Framework to Integral Operator Problems [0.0]
本稿では,物理インフォームド深層学習フレームワークにおける積分演算子近似のための効率的なテンソルベクトル積法を提案する。
我々は、この方法がフレドホルムとボルテラ積分作用素の両方に適用可能であることを実証する。
また,カプトー微分を効率的に計算する高速行列ベクトル積アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-03T13:43:58Z) - Finite Operator Learning: Bridging Neural Operators and Numerical Methods for Efficient Parametric Solution and Optimization of PDEs [0.0]
本稿では,ニューラルネットワーク,物理情報処理機械学習,およびPDEを解くための標準的な数値法を組み合わせた手法を提案する。
データのない方法で偏微分方程式をパラメトリックに解き、正確な感度を与えることができる。
本研究では, 不均一材料中の定常熱方程式に着目した。
論文 参考訳(メタデータ) (2024-07-04T21:23:12Z) - A Hybrid Kernel-Free Boundary Integral Method with Operator Learning for Solving Parametric Partial Differential Equations In Complex Domains [0.0]
カーネル自由境界積分法(KFBI)は楕円偏微分方程式(PDE)から生じる境界積分方程式に対する反復解を示す
本稿では,KFBI法の基本原理と深層学習能力を統合するハイブリッドKFBI法を提案する。
論文 参考訳(メタデータ) (2024-04-23T17:25:35Z) - Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
本研究では,データ活用を必要とせずにパラメトリック偏微分方程式(PDE)を解く演算子に基づく新しい手法を提案する。
提案手法は,既存の科学的機械学習技術と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-03T12:37:15Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
コーンシャム密度汎関数論(KS-DFT)を解くための深層学習手法を提案する。
このような手法はSCF法と同じ表現性を持つが,計算複雑性は低下する。
さらに,本手法により,より複雑なニューラルベース波動関数の探索が可能となった。
論文 参考訳(メタデータ) (2023-03-01T10:38:10Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
多くの実世界の問題は複雑な非機能的制約を持ち、多くのデータポイントを使用する。
提案手法は,従来最もよく知られた結果で既存手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-19T14:48:54Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Numerical Solution of Stiff Ordinary Differential Equations with Random
Projection Neural Networks [0.0]
正規微分方程式(ODE)の解に対する乱射影ニューラルネットワーク(RPNN)に基づく数値スキームを提案する。
提案手法は剛性の影響を受けずに高い数値近似精度を示し,textttode45 と textttode15s の関数よりも優れていた。
論文 参考訳(メタデータ) (2021-08-03T15:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。