論文の概要: Gravity from entropy
- arxiv url: http://arxiv.org/abs/2408.14391v4
- Date: Sun, 10 Nov 2024 12:51:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:03:20.371053
- Title: Gravity from entropy
- Title(参考訳): エントロピーからの重力
- Authors: Ginestra Bianconi,
- Abstract要約: 重力はエントロピー的作用結合物質場と幾何学から導かれる。
提案されたエントロピー作用は、時空の計量と物質場によって誘導される計量の間の量子相対エントロピーである。
この場の理論の正準量子化は、量子重力に対する新たな洞察をもたらす可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Gravity is derived from an entropic action coupling matter fields with geometry. The fundamental idea is to relate the metric of Lorentzian spacetime to a density matrix and to describe the matter fields topologically, according to a Dirac-K\"ahler description, as the direct sum of a zero-form, a one-form and a two-form. While the geometry of spacetime is defined by its metric, the matter fields can be used to define an alternative metric, the metric induced by the matter fields, which geometrically describes the interplay between spacetime and matter. The proposed entropic action is the quantum relative entropy between the metric of spacetime and the metric induced by the matter fields. The modified Einstein equations obtained from this action reduce to the Einstein equations with zero cosmological constant in the regime of low coupling. By introducing the G-field, which acts as a set of Lagrangian multipliers, the proposed entropic action reduces to a dressed Einstein-Hilbert action with an emergent small and positive cosmological constant only dependent on the G-field. The obtained equations of modified gravity remains second order in the metric and in the G-field. A canonical quantization of this field theory could bring new insights into quantum gravity while further research might clarify the role that the G-field could have for dark matter.
- Abstract(参考訳): 重力はエントロピー作用結合物質場と幾何学から導かれる。
基本的な考え方は、ローレンツ時空の計量を密度行列に関連付け、ディラック・ケーラーの記述によれば、物質場をゼロ形式、一形式、二形式の直和として位相的に記述することである。
時空の幾何学はその計量によって定義されるが、物質場は、時空と物質の間の相互作用を幾何学的に記述する物質場によって誘導される計量である別の計量を定義するために用いられる。
提案されたエントロピー作用は、時空の計量と物質場によって誘導される計量の間の量子相対エントロピーである。
この作用から得られた修正アインシュタイン方程式は、低結合状態における宇宙定数がゼロのアインシュタイン方程式に還元される。
ラグランジアン乗算の集合として作用するG-場を導入することにより、提案されたエントロピー作用は、G-場にのみ依存する創発的かつ正の宇宙定数を持つアインシュタイン・ヒルベルト作用に還元される。
得られた修正重力の方程式は、計量と G-体において二階に留まる。
この場の理論の正準量子化は、量子重力に対する新たな洞察をもたらし、さらなる研究は、G場が暗黒物質に対して持つ役割を明らかにするかもしれない。
関連論文リスト
- Geometry-Information Duality: Quantum Entanglement Contributions to Gravitational Dynamics [0.0]
本稿では、時空の幾何学的性質と量子場の情報量との基本的な双対性を提案する。
量子エンタングルメントエントロピーから導かれる情報的応力-エネルギーテンソルを導入することでアインシュタインの場方程式を変化させる。
この結果は、量子情報が重力力学において重要な役割を担っていることを示唆している。
論文 参考訳(メタデータ) (2024-09-17T19:28:50Z) - Quantum Effects on Cosmic Scales as an Alternative to Dark Matter and Dark Energy [5.577935944665]
スピンねじれ理論を開発し、球対称および静的重力系について検討する。
我々は、マクロな物質の量子スピンが宇宙スケールで注目されるようになると仮定する。
このアプローチの重要な側面は、スケール関数を持つディラック方程式の定数質量を置換することである。
論文 参考訳(メタデータ) (2024-09-02T09:02:29Z) - Does the Universe have its own mass? [62.997667081978825]
宇宙の質量は重力制約の非ゼロ値の分布である。
重力のユークリッド量子論の定式化も、初期状態を決定するために提案されている。
通常の物質とは無関係であるため、自身の質量の分布は空間の幾何学に影響を及ぼす。
論文 参考訳(メタデータ) (2022-12-23T22:01:32Z) - Geometric Event-Based Relativistic Quantum Mechanics [8.057006406834466]
本稿では,量子力学の特殊相対論的枠組みを提案する。
これは、イベントのためのヒルベルト空間を導入することに基づいている。
我々の理論はポアンカレの対称性を幾何学的ユニタリ変換として満たしている。
論文 参考訳(メタデータ) (2022-06-16T17:58:09Z) - On local conservation of information content in Schwarzschild black
holes [0.0]
シュワルツシルトブラックホール情報量に対応する一般相対性理論の幾何学的位相を導入する。
この結果は、量子重力理論の重要な側面を捉えるために提案された場方程式の有用性を証明している。
論文 参考訳(メタデータ) (2022-03-28T13:46:01Z) - Relativistic quantum field theory of stochastic dynamics in the Hilbert
space [8.25487382053784]
我々はヒルベルト空間における力学の作用定式化を開発する。
確率場と量子場を結合することにより、統計的時空変換を持つ乱数作用を得る。
相互作用が存在する場合でもQFTは再正常であることを示す。
論文 参考訳(メタデータ) (2021-12-28T04:58:43Z) - The Entropic Dynamics of Relativistic Quantum Fields in Curved
Space-time [0.0]
本研究では、エントロピック・ダイナミクス(ED)フレームワークを用いて、時空におけるスカラー場のための量子力学を構築する。
同様の手法を用いて、相対論的ではあるが明らかにそうではない平坦な時空における量子スカラー場の理論を構築する。
このような理論を考察し、その妥当性を量子重力理論の候補として論じる。
論文 参考訳(メタデータ) (2021-05-14T19:24:21Z) - The arithmetic of uncertainty unifies quantum formalism and relativistic
spacetime [0.0]
量子論は小さなスケールで確率的に対象を扱うが、相対性理論は空間と時間の運動を古典的に扱う。
ここでは、量子論の数学的構造と相対性理論の数学的構造が純粋思考から一緒に従うことを示す。
したがって、時間次元と空間次元の3次元は、物理学の深遠で避けられない枠組みとして導かれる。
論文 参考訳(メタデータ) (2020-12-19T20:40:27Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
我々は、リッチフローの幾何学理論に関連する位相量子重力理論の族を示す。
まず、BRST量子化を用いて空間計量のみに対する「原始的」トポロジカルリーフシッツ型理論を構築する。
葉保存時空対称性をゲージすることで原始理論を拡張する。
論文 参考訳(メタデータ) (2020-10-29T06:15:30Z) - Observation of gauge invariance in a 71-site Bose-Hubbard quantum
simulator [5.5847872095969375]
ゲージ理論は局所対称性の制約によって物理学の基本法則を実装している。
量子電磁力学において、ガウスの法則は荷電物質と電磁場の間に固有の局所的関係を導入する。
微細加工された量子デバイスにおけるゲージ理論のダイナミクスをシミュレートする。
論文 参考訳(メタデータ) (2020-03-19T18:00:01Z) - Holographic Space-time and Quantum Information [0.0]
ホログラフィック時空はローレンツ幾何学の原理を量子情報の言語に翻訳したものである。
アインシュタインの相対性理論の量子バージョンは、因果ダイヤモンドによって共有される相互量子情報の制約の集合である。
論文 参考訳(メタデータ) (2020-01-22T18:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。