Word and Phrase Features in Graph Convolutional Network for Automatic Question Classification
- URL: http://arxiv.org/abs/2409.02481v2
- Date: Tue, 21 Jan 2025 16:03:05 GMT
- Title: Word and Phrase Features in Graph Convolutional Network for Automatic Question Classification
- Authors: Junyoung Lee, Ninad Dixit, Kaustav Chakrabarti, S. Supraja,
- Abstract summary: We propose a novel approach leveraging graph convolutional networks, named Phrase Question-Graph Convolutional Network (PQ-GCN) to better model the inherent structure of questions.
Our findings demonstrate that the proposed model, augmented with these features, offer a promising solution for more robust and context-aware question classification.
- Score: 0.7405975743268344
- License:
- Abstract: Effective question classification is crucial for AI-driven educational tools, enabling adaptive learning systems to categorize questions by skill area, difficulty level, and competence. This classification not only supports educational diagnostics and analytics but also enhances complex tasks like information retrieval and question answering by associating questions with relevant categories. Traditional methods, often based on word embeddings and conventional classifiers, struggle to capture the nuanced relationships in natural language, leading to suboptimal performance. To address this, we propose a novel approach leveraging graph convolutional networks, named Phrase Question-Graph Convolutional Network (PQ-GCN) to better model the inherent structure of questions. By representing questions as graphs-where nodes signify words or phrases and edges denote syntactic or semantic relationships-our method allows the model to learn from the interconnected nature of language more effectively. Additionally, we explore the incorporation of phrase-based features to enhance classification performance on question datasets of various domains and characteristics. Our findings demonstrate that the proposed model, augmented with these features, offer a promising solution for more robust and context-aware question classification, bridging the gap between graph neural network research and practical educational applications of AI.
Related papers
- Semantic Parsing for Question Answering over Knowledge Graphs [3.10647754288788]
We introduce a novel method with graph-to-segment mapping for question answering over knowledge graphs.
This method centers on semantic parsing, a key approach for interpreting these utterances.
Our framework employs a combination of rule-based and neural-based techniques to parse and construct semantic segment sequences.
arXiv Detail & Related papers (2023-12-01T20:45:06Z) - CADGE: Context-Aware Dialogue Generation Enhanced with Graph-Structured Knowledge Aggregation [25.56539617837482]
A novel context-aware graph-attention model (Context-aware GAT) is proposed.
It assimilates global features from relevant knowledge graphs through a context-enhanced knowledge aggregation mechanism.
Empirical results demonstrate that our framework outperforms conventional GNN-based language models in terms of performance.
arXiv Detail & Related papers (2023-05-10T16:31:35Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
We consider the task of conversational semantic parsing over general purpose knowledge graphs (KGs) with millions of entities, and thousands of relation-types.
We focus on models which are capable of interactively mapping user utterances into executable logical forms.
arXiv Detail & Related papers (2023-05-04T16:04:41Z) - Semantic Interactive Learning for Text Classification: A Constructive
Approach for Contextual Interactions [0.0]
We propose a novel interaction framework called Semantic Interactive Learning for the text domain.
We frame the problem of incorporating constructive and contextual feedback into the learner as a task to find an architecture that enables more semantic alignment between humans and machines.
We introduce a technique called SemanticPush that is effective for translating conceptual corrections of humans to non-extrapolating training examples.
arXiv Detail & Related papers (2022-09-07T08:13:45Z) - Enhanced Knowledge Selection for Grounded Dialogues via Document
Semantic Graphs [123.50636090341236]
We propose to automatically convert background knowledge documents into document semantic graphs.
Our document semantic graphs preserve sentence-level information through the use of sentence nodes and provide concept connections between sentences.
Our experiments show that our semantic graph-based knowledge selection improves over sentence selection baselines for both the knowledge selection task and the end-to-end response generation task on HollE.
arXiv Detail & Related papers (2022-06-15T04:51:32Z) - Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers [86.64972552583941]
We put forward a sequence tagging BERT-based model enhanced with a graph-aware transformer architecture, which we evaluate on the task of collocation recognition in context.
Our results suggest that explicitly encoding syntactic dependencies in the model architecture is helpful, and provide insights on differences in collocation typification in English, Spanish and French.
arXiv Detail & Related papers (2022-05-23T16:47:37Z) - Graph Adaptive Semantic Transfer for Cross-domain Sentiment
Classification [68.06496970320595]
Cross-domain sentiment classification (CDSC) aims to use the transferable semantics learned from the source domain to predict the sentiment of reviews in the unlabeled target domain.
We present Graph Adaptive Semantic Transfer (GAST) model, an adaptive syntactic graph embedding method that is able to learn domain-invariant semantics from both word sequences and syntactic graphs.
arXiv Detail & Related papers (2022-05-18T07:47:01Z) - Taxonomy Enrichment with Text and Graph Vector Representations [61.814256012166794]
We address the problem of taxonomy enrichment which aims at adding new words to the existing taxonomy.
We present a new method that allows achieving high results on this task with little effort.
We achieve state-of-the-art results across different datasets and provide an in-depth error analysis of mistakes.
arXiv Detail & Related papers (2022-01-21T09:01:12Z) - A Hierarchical Reasoning Graph Neural Network for The Automatic Scoring
of Answer Transcriptions in Video Job Interviews [14.091472037847499]
We propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs.
We employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session.
Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction.
arXiv Detail & Related papers (2020-12-22T12:27:45Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z) - Investigating Typed Syntactic Dependencies for Targeted Sentiment
Classification Using Graph Attention Neural Network [10.489983726592303]
We investigate a novel relational graph attention network that integrates typed syntactic dependency information.
Results show that our method can effectively leverage label information for improving targeted sentiment classification performances.
arXiv Detail & Related papers (2020-02-22T11:17:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.