論文の概要: Bridging Developer Needs and Feasible Features for AI Assistants in IDEs
- arxiv url: http://arxiv.org/abs/2410.08676v2
- Date: Mon, 04 Aug 2025 09:11:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 14:46:24.267768
- Title: Bridging Developer Needs and Feasible Features for AI Assistants in IDEs
- Title(参考訳): IDEにおけるAIアシスタントの開発者ニーズと実現可能な機能
- Authors: Agnia Sergeyuk, Ekaterina Koshchenko, Ilya Zakharov, Timofey Bryksin, Maliheh Izadi,
- Abstract要約: 35人のプロの開発者にインタビューして、未完成のニーズと期待を明らかにしました。
分析の結果,技術改善,インタラクション,アライメント,スキル構築の簡略化,プログラミングタスクの5つの重要な領域が明らかになった。
その結果、開発者のニーズと実践者による実装とコンテキスト認識に焦点をあてた機能に対する判断との間には、強い整合性があることが示される。
- 参考スコア(独自算出の注目度): 6.05260196829912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the increasing presence of AI assistants in Integrated Development Environments, it remains unclear what developers actually need from these tools and which features are likely to be implemented in practice. To investigate this gap, we conducted a two-phase study. First, we interviewed 35 professional developers from three user groups (Adopters, Churners, and Non-Users) to uncover unmet needs and expectations. Our analysis revealed five key areas: Technology Improvement, Interaction, and Alignment, as well as Simplifying Skill Building, and Programming Tasks. We then examined the feasibility of addressing selected needs through an internal prediction market involving 102 practitioners. The results demonstrate a strong alignment between the developers' needs and the practitioners' judgment for features focused on implementation and context awareness. However, features related to proactivity and maintenance remain both underestimated and technically unaddressed. Our findings reveal gaps in current AI support and provide practical directions for developing more effective and sustainable in-IDE AI systems.
- Abstract(参考訳): 統合開発環境におけるAIアシスタントの存在が増加しているにもかかわらず、開発者がこれらのツールから実際に何を必要としているのか、実際にどの機能が実装されるのかは不明だ。
このギャップを調査するため、我々は2段階の研究を行った。
まず、私たちは3つのユーザグループ(Adopters、Churners、Non-Users)から35人のプロフェッショナル開発者にインタビューして、未完成のニーズと期待を明らかにしました。
分析の結果,技術改善,インタラクション,アライメント,スキル構築の簡略化,プログラミングタスクの5つの重要な領域が明らかになった。
次に,102人の実践者が参加する内部予測市場を通じて,選択したニーズに対処できる可能性を検討した。
その結果、開発者のニーズと実践者による実装とコンテキスト認識に焦点をあてた機能に対する判断との間には、強い整合性があることが示される。
しかし、積極性や保守に関する特徴は、過小評価され、技術的には不適当である。
我々の発見は、現在のAIサポートのギャップを明らかにし、より効果的で持続可能なIDE内AIシステムを開発するための実践的な方向性を提供する。
関連論文リスト
- The SPACE of AI: Real-World Lessons on AI's Impact on Developers [0.807084206814932]
我々は,SPACEフレームワークの次元にまたがるAIの影響,すなわち満足度,パフォーマンス,アクティビティ,コラボレーション,効率を,開発者がどのように認識するかを研究する。
AIは広く採用されており、生産性の向上、特にルーチンタスクに広く見なされている。
開発者の報告によると、効率性と満足度は向上し、コラボレーションへの影響の証拠は少なくなった。
論文 参考訳(メタデータ) (2025-07-31T21:45:54Z) - Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice [57.94036023167952]
我々は、AIの倫理的影響を研究するための努力は、その環境への影響を評価するものと相まって行われるべきであると論じる。
我々は,AI研究と実践にAI倫理と持続可能性を統合するためのベストプラクティスを提案する。
論文 参考訳(メタデータ) (2025-04-01T13:53:11Z) - The Impact of Generative AI Coding Assistants on Developers Who Are Visually Impaired [3.2895414694900684]
我々は、視覚障害のある開発者が、生成型AIコーディングアシスタントを使用して一連のプログラミングタスクを完了した研究を行った。
参加者はAIアシスタントが有益であることに気付き、重要なアドバンテージを報告したが、アクセシビリティの課題も強調した。
我々の発見は、活動中心の設計原則を生成型AIアシスタントに適用する必要性を強調した。
論文 参考訳(メタデータ) (2025-03-10T22:06:43Z) - Human-AI Experience in Integrated Development Environments: A Systematic Literature Review [2.1749194587826026]
In-IDE HAXはAI支援コーディング環境におけるヒューマン・コンピュータインタラクションの進化するダイナミクスを探求する。
この結果から,AIによるコーディングによって開発者の生産性が向上するだけでなく,検証オーバーヘッドや自動化バイアス,信頼性の過大化といった課題も生じていることがわかった。
コードの正確性、セキュリティ、保守性に関する懸念は、説明可能性、検証メカニズム、適応的なユーザコントロールに対する緊急の必要性を浮き彫りにする。
論文 参考訳(メタデータ) (2025-03-08T12:40:18Z) - AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
我々は、AI安全のための代表的攻撃、防衛、評価方法論を統合する統合されたフレームワークとツールキットであるAISafetyLabを紹介する。
AISafetyLabには直感的なインターフェースがあり、開発者はシームレスにさまざまなテクニックを適用できる。
我々はヴィクナに関する実証的研究を行い、異なる攻撃戦略と防衛戦略を分析し、それらの比較効果に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-02-24T02:11:52Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AIエージェントは、あいまいで不明確なユーザー指示に基づいて、タスクを自動化するためにますますデプロイされている。
不安定な仮定をし、明確な質問をしないことは、最適以下の結果につながる可能性がある。
対話型コード生成設定において,LLMエージェントが不明瞭な命令を処理する能力について,プロプライエタリモデルとオープンウェイトモデルを評価して検討する。
論文 参考訳(メタデータ) (2025-02-18T17:12:26Z) - Understanding User Mental Models in AI-Driven Code Completion Tools: Insights from an Elicitation Study [5.534104886050636]
AIによるコード補完ツールと対話する際に、フォーカスグループを使用してメンタルモデルを抽出する56人の開発者を対象に、ライセンス研究を実施します。
この研究結果は、ユーザの期待に応え、満足度と生産性を高め、AIによる開発ツールへの信頼を高める、人間中心のCCTを設計するための実用的な洞察を提供する。
我々はまた、開発者のコーディングの好みや環境に動的に適応し、多様な環境へのシームレスな統合を保証する概念実証CCTであるAtheNAを開発した。
論文 参考訳(メタデータ) (2025-02-04T10:20:49Z) - How Developers Interact with AI: A Taxonomy of Human-AI Collaboration in Software Engineering [8.65285948382426]
開発者とAIツール間のインタラクションタイプを分類し,11種類のインタラクションタイプを識別する。
この分類に基づいて、AIインタラクションの最適化、開発者のコントロールの改善、AI支援開発における信頼とユーザビリティの課題への対処に焦点を当てた研究課題を概説する。
論文 参考訳(メタデータ) (2025-01-15T12:53:49Z) - TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
私たちは小さなソフトウェア企業環境を模倣したデータによる自己完結型環境を構築します。
最も競争力のあるエージェントでは、タスクの24%が自律的に完了できます。
これは、LMエージェントによるタスク自動化に関するニュアンスな絵を描く。
論文 参考訳(メタデータ) (2024-12-18T18:55:40Z) - "I Don't Use AI for Everything": Exploring Utility, Attitude, and Responsibility of AI-empowered Tools in Software Development [19.851794567529286]
本研究では、ソフトウェア開発プロセスにおけるAIを活用したツールの採用、影響、およびセキュリティに関する考察を行う。
ソフトウェア開発のさまざまな段階において,AIツールが広く採用されていることが判明した。
論文 参考訳(メタデータ) (2024-09-20T09:17:10Z) - Constraining Participation: Affordances of Feedback Features in Interfaces to Large Language Models [49.74265453289855]
大規模言語モデル(LLM)は、コンピュータ、Webブラウザ、ブラウザベースのインターフェースによるインターネット接続を持つ人なら誰でも利用できるようになった。
本稿では,ChatGPTインタフェースにおける対話型フィードバック機能の可能性について検討し,ユーザ入力の形状やイテレーションへの参加について分析する。
論文 参考訳(メタデータ) (2024-08-27T13:50:37Z) - OpenHands: An Open Platform for AI Software Developers as Generalist Agents [109.8507367518992]
私たちは、人間の開発者と同じような方法で世界と対話するAIエージェントを開発するためのプラットフォームであるOpenHandsを紹介します。
プラットフォームが新しいエージェントの実装を可能にし、コード実行のためのサンドボックス環境との安全なインタラクション、評価ベンチマークの導入について説明する。
論文 参考訳(メタデータ) (2024-07-23T17:50:43Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
本稿では,高度AIアシスタントがもたらす倫理的・社会的リスクについて論じる。
我々は、高度なAIアシスタントを自然言語インタフェースを持つ人工知能エージェントとして定義し、ユーザに代わってアクションのシーケンスを計画し実行することを目的としている。
先進的なアシスタントの社会規模での展開を考察し、協力、株式とアクセス、誤情報、経済的影響、環境、先進的なAIアシスタントの評価方法に焦点をあてる。
論文 参考訳(メタデータ) (2024-04-24T23:18:46Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
我々はSEの多様性と包摂性に関する課題と解決策について、SE研究者や実践者から知見を提示する。
我々は,将来的なユートピアやディストピアのビジョンを共有し,今後の研究の方向性とアカデミックや産業への示唆を提供する。
論文 参考訳(メタデータ) (2024-04-10T16:18:11Z) - Open-Source AI-based SE Tools: Opportunities and Challenges of Collaborative Software Learning [23.395624804517034]
大規模言語モデル(LLM)は、ソフトウェア工学(SE)タスクの進展に役立っている。
これらのAIベースのSEモデルのコラボレーションは、高品質なデータソースの最大化に重点を置いている。
特に高品質のデータは、しばしば商業的または機密性の高い価値を持ち、オープンソースAIベースのSEプロジェクトではアクセスできない。
論文 参考訳(メタデータ) (2024-04-09T10:47:02Z) - In-IDE Human-AI Experience in the Era of Large Language Models; A
Literature Review [2.6703221234079946]
IDEにおけるヒューマンAIエクスペリエンスの研究は、これらのAIツールがソフトウェア開発プロセスをどのように変化させているかを理解する上で非常に重要である。
我々は,IDE内人間-AI体験研究の現状を研究するために文献レビューを行った。
論文 参考訳(メタデータ) (2024-01-19T14:55:51Z) - Exploring the intersection of Generative AI and Software Development [0.0]
生成AIとソフトウェアエンジニアリングの相乗効果は、変革的なフロンティアとして現れます。
このホワイトペーパーは、探索されていない領域に展開し、生成的AI技術がソフトウェア開発にどのように革命をもたらすかを解明する。
これはステークホルダーのためのガイドとして機能し、ソフトウェア工学における生成AIの適用に関する議論と実験を促している。
論文 参考訳(メタデータ) (2023-12-21T19:23:23Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
フェデレートドラーニング(FL)は、学習効率を改善し、AIGCのプライバシー保護を達成するために利用することができる。
我々は,AIGCの強化を目的としたFLベースの技術を提案し,ユーザが多様でパーソナライズされた高品質なコンテンツを作成できるようにすることを目的とする。
論文 参考訳(メタデータ) (2023-07-14T04:13:11Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
私たちは倫理的考慮事項を(アジャイル)ソフトウェア開発プロセスに組み込む必要があると論じています。
私たちは、すでに存在しており、確立されたアジャイルソフトウェア開発プロセスで倫理的な議論を実施する可能性を強調しました。
論文 参考訳(メタデータ) (2021-07-15T11:14:03Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。