論文の概要: Predicting adaptively chosen observables in quantum systems
- arxiv url: http://arxiv.org/abs/2410.15501v1
- Date: Sun, 20 Oct 2024 20:45:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:19:45.480189
- Title: Predicting adaptively chosen observables in quantum systems
- Title(参考訳): 量子系における適応的に選択された可観測物の予測
- Authors: Jerry Huang, Laura Lewis, Hsin-Yuan Huang, John Preskill,
- Abstract要約: 本研究は、局所、パウリ、有界-フロベニウス-ノルム可観測という3つのクラスに対する適応的な設定について検討する。
我々は、任意に大きい未知の量子状態の$Omega(sqrtM)$サンプルが、適応的に選択された局所およびパウリ観測可能な$M$の期待値を予測するために必要であることを証明した。
- 参考スコア(独自算出の注目度): 1.1562071835482224
- License:
- Abstract: Recent advances have demonstrated that $\mathcal{O}(\log M)$ measurements suffice to predict $M$ properties of arbitrarily large quantum many-body systems. However, these remarkable findings assume that the properties to be predicted are chosen independently of the data. This assumption can be violated in practice, where scientists adaptively select properties after looking at previous predictions. This work investigates the adaptive setting for three classes of observables: local, Pauli, and bounded-Frobenius-norm observables. We prove that $\Omega(\sqrt{M})$ samples of an arbitrarily large unknown quantum state are necessary to predict expectation values of $M$ adaptively chosen local and Pauli observables. We also present computationally-efficient algorithms that achieve this information-theoretic lower bound. In contrast, for bounded-Frobenius-norm observables, we devise an algorithm requiring only $\mathcal{O}(\log M)$ samples, independent of system size. Our results highlight the potential pitfalls of adaptivity in analyzing data from quantum experiments and provide new algorithmic tools to safeguard against erroneous predictions in quantum experiments.
- Abstract(参考訳): 最近の進歩は、$\mathcal{O}(\log M)$測定が任意に大きい量子多体系の$M$特性を予測するのに十分であることを示した。
しかし、これらの顕著な発見は、予測される特性はデータとは独立して選択されると仮定している。
この仮定は、科学者が以前の予測を見た後、属性を適応的に選択する、実際に違反する可能性がある。
本研究は、局所、パウリ、有界-フロベニウス-ノルム可観測という3つのクラスに対する適応的な設定について検討する。
我々は、任意に大きな未知の量子状態のサンプル$\Omega(\sqrt{M})$が、適応的に選択された局所およびパウリ観測可能な$M$の期待値を予測するために必要であることを証明した。
また、この情報理論の下界を実現する計算効率のよいアルゴリズムを提案する。
対照的に、有界-フロベニウス-ノルム観測器に対しては、システムサイズに依存しない$\mathcal{O}(\log M)$サンプルのみを必要とするアルゴリズムを考案する。
本結果は,量子実験のデータ解析における適応性の潜在的な落とし穴を強調し,量子実験における誤予測に対する新しいアルゴリズムツールを提供する。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Heisenberg-limited adaptive gradient estimation for multiple observables [0.39102514525861415]
量子力学において、一般観測値の期待値を測定することは、固有の統計的不確実性を持つ。
我々は,ルート平均二乗誤差内における一般可観測値の期待値を推定する適応量子アルゴリズムを提案する。
本手法は,量子コンピュータを用いた複雑な量子システムにおいて,様々な物理特性を正確に理解し,予測する新しい手法である。
論文 参考訳(メタデータ) (2024-06-05T14:16:47Z) - Predicting Ground State Properties: Constant Sample Complexity and Deep Learning Algorithms [48.869199703062606]
量子多体物理学における基本的な問題は、局所ハミルトニアンの基底状態を見つけることである。
基底状態特性を学習するためのシステムサイズ$n$とは無関係に,一定のサンプル複雑性を実現する2つのアプローチを導入する。
論文 参考訳(メタデータ) (2024-05-28T18:00:32Z) - Exponentially improved efficient machine learning for quantum many-body states with provable guarantees [0.0]
量子多体状態とその性質をモデル非依存の応用で効率的に学習するための理論的保証を提供する。
本結果は,量子多体状態とその特性をモデル非依存の応用で効率的に学習するための理論的保証を提供する。
論文 参考訳(メタデータ) (2023-04-10T02:22:36Z) - Efficient learning of ground & thermal states within phases of matter [1.1470070927586014]
a) 与えられたギブス状態のパラメータ化と、この状態におけるリプシッツ観測値の期待値、および(b) 物質の熱的あるいは量子的な相における局所観測可能物の期待値の学習である。
論文 参考訳(メタデータ) (2023-01-30T14:39:51Z) - Validation tests of GBS quantum computers give evidence for quantum
advantage with a decoherent target [62.997667081978825]
複数モードデータの検証に指紋としてグループカウント確率の正P位相空間シミュレーションを用いる。
偽データを解き放つ方法を示し、これを古典的なカウントアルゴリズムに適用する。
論文 参考訳(メタデータ) (2022-11-07T12:00:45Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
ジャジンスキー等式から動機付けられたアルゴリズムを用いて, 有限温度可観測体がどのように得られるかを示す。
長範囲の逆場イジングモデルにおける有限温度相転移は、捕捉されたイオン量子シミュレータで特徴づけられることを示す。
論文 参考訳(メタデータ) (2022-06-03T18:00:02Z) - Nearly Optimal Quantum Algorithm for Estimating Multiple Expectation
Values [0.17126708168238122]
Gily'enらによる量子勾配推定アルゴリズムを利用して$mathcalO(sqrtM/varepsilon)$を対数因子にスケールアップする手法について述べる。
ブラックボックスとして処理された場合,このスケーリングが高精度なシステムでは最悪のケースであることが証明された。
論文 参考訳(メタデータ) (2021-11-17T18:34:17Z) - Understanding the Under-Coverage Bias in Uncertainty Estimation [58.03725169462616]
量子レグレッションは、現実の望ましいカバレッジレベルよりもアンファンダーカバー(enmphunder-cover)する傾向がある。
我々は、量子レグレッションが固有のアンダーカバーバイアスに悩まされていることを証明している。
我々の理論は、この過大被覆バイアスが特定の高次元パラメータ推定誤差に起因することを明らかにしている。
論文 参考訳(メタデータ) (2021-06-10T06:11:55Z) - Information-theoretic bounds on quantum advantage in machine learning [6.488575826304023]
物理実験結果の予測における古典的および量子機械学習(ML)モデルの性能について検討する。
任意の入力分布 $mathcalD(x)$ に対して、古典的な ML モデルは、最適量子 ML モデルに匹敵する回数 $mathcalE$ にアクセスすることで、平均で正確な予測を提供することができる。
論文 参考訳(メタデータ) (2021-01-07T10:10:09Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
NISQとフォールトトレラントの両方の設定で格子シュウィンガーモデルをシミュレートするために、スケーラブルで明示的なデジタル量子アルゴリズムを提供する。
格子単位において、結合定数$x-1/2$と電場カットオフ$x-1/2Lambda$を持つ$N/2$物理サイト上のシュウィンガーモデルを求める。
NISQと耐故障性の両方でコストがかかるオブザーバブルを、単純なオブザーバブルとして推定し、平均ペア密度を推定する。
論文 参考訳(メタデータ) (2020-02-25T19:18:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。