論文の概要: Floquetifying stabiliser codes with distance-preserving rewrites
- arxiv url: http://arxiv.org/abs/2410.17240v2
- Date: Mon, 16 Dec 2024 15:54:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:49:55.338414
- Title: Floquetifying stabiliser codes with distance-preserving rewrites
- Title(参考訳): 距離保存書き直しによる浮動小数点安定化符号
- Authors: Benjamin Rodatz, Boldizsár Poór, Aleks Kissinger,
- Abstract要約: 任意の重み安定化器の測定を1ビットと2ビットの演算で量子回路に分解する。
距離保存リライトのみを使用するため、結果回路内の1つのエラーがデータキュービット上で少なくとも1つのエラーを生成することが保証される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Stabiliser codes with large weight measurements can be challenging to implement fault-tolerantly. To overcome this, we propose a Floquetification procedure which, given a stabiliser code, synthesises a novel Floquet code that only uses single- and two-qubit operations. Moreover, this procedure preserves the distance and number of logicals of the original code. The new Floquet code requires additional physical qubits. This overhead is linear in the weight of the largest measurement of the original code. Our method is based on the ZX calculus, a graphical language for representing and rewriting quantum circuits. However, a problem arises with the use of ZX in the context of rewriting error-correcting codes: ZX rewrites generally do not preserve code distance. Tackling this issue, we define the notion of distance-preserving rewrite that enables the transformation of error-correcting codes without changing their distance. These distance-preserving rewrites are used to decompose arbitrary weight stabiliser measurements into quantum circuits with single- and two-qubit operations. As we only use distance-preserving rewrites, we are guaranteed that a single error in the resulting circuit creates at most a single error on the data qubits. These decompositions enable us to generalise the Floquetification procedure of [arXiv:2307.11136] to arbitrary stabiliser codes, provably preserving the distance and number of logicals of the original code.
- Abstract(参考訳): 大きな重量測定値を持つ安定化器符号は、耐故障性を実装するのが困難である。
そこで本研究では,単一および2ビット演算のみを使用する新しいFloquet符号を合成するFloquetification法を提案する。
さらに、この手順は元のコードの距離と論理的な数を保存する。
新しいFloquetコードは、追加の物理量子ビットを必要とする。
このオーバーヘッドは、元のコードで最大の測定値の重みである。
本手法は,量子回路の表現と書き換えのためのグラフィカル言語であるZX計算に基づいている。
しかし、エラー訂正コードの書き直しという文脈でZXを使用することで問題が発生する: ZX書き換えは一般的にコード距離を保たない。
この問題に対処するため、距離を変更せずに誤り訂正符号を変換できる距離保存書き換えの概念を定義した。
これらの距離保存リライトは、任意の重み安定化器の測定を1量子と2量子の演算を持つ量子回路に分解するために用いられる。
距離保存リライトのみを使用するため、結果回路内の1つのエラーがデータキュービット上で少なくとも1つのエラーを生成することが保証される。
これらの分解により, [arXiv:2307.11136] のフロッケ化手順を任意の安定化符号に一般化し, 元の符号の距離と論理値の数を確実に保存することができる。
関連論文リスト
- On the Constant Depth Implementation of Pauli Exponentials [49.48516314472825]
任意の指数を$mathcalO(n)$ ancillae と 2体 XX と ZZ の相互作用を用いて一定深さの回路に分解する。
クビットリサイクルの恩恵を受ける回路の書き直し規則を導入し,本手法の正しさを実証する。
論文 参考訳(メタデータ) (2024-08-15T17:09:08Z) - Creating entangled logical qubits in the heavy-hex lattice with topological codes [0.0]
この作業では、このバグが機能にどのように変換されるかを示します。
コード距離が最大$d = 4$の論理量子ビット間の絡み合いを示す。
我々は、94%の忠実さを特徴とするポストセレクションを持つ$d=2$のケースに対して、ベルの不平等の違反を検証する。
論文 参考訳(メタデータ) (2024-04-24T17:02:35Z) - A family of permutationally invariant quantum codes [54.835469342984354]
新たな家系の符号は、自発的な減衰誤差と同様に、量子削除誤差を補正する。
我々の構成には、以前に知られていた置換不変量子符号のいくつかが含まれている。
小さな$t$の場合、これらの条件はコンピュータによるコードの新しい例を構築するのに使うことができる。
論文 参考訳(メタデータ) (2023-10-09T02:37:23Z) - Quantum Lego Expansion Pack: Enumerators from Tensor Networks [1.489619600985197]
量子量列挙子を最も一般的な形式で計算するための最初のテンソルネットワーク法を提供する。
非(Pauli)安定化器符号の場合、これはコード距離を計算するのに最適なアルゴリズムである。
これらの列挙子は論理的誤り率を正確に計算するために使用することができ、従って任意の単一キュービットやキューディットのエラーチャネルに対してデコーダを構築することができる。
論文 参考訳(メタデータ) (2023-08-09T18:00:02Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
単一マルチレベルキューディットに実装された安定化器量子エラー訂正符号について論じる。
これらのコードは、quditの特定の物理的エラーに合わせてカスタマイズすることができ、効果的にそれらを抑制することができる。
分子スピン四重項上のフォールトトレラントな実装を実証し、線形キューディットサイズのみの成長を伴うほぼ指数関数的な誤差抑制を示す。
論文 参考訳(メタデータ) (2023-07-20T10:51:23Z) - Noisy decoding by shallow circuits with parities: classical and quantum [0.0]
符号語が正の誤差率で雑音の多いチャネル上で送信される場合, 従来の回路では, 消滅した少数のメッセージのみを正確に復元できることが示される。
我々は、コードワードの$(1/2 - varepsilon)$-fractionが逆向きに破損しても、確率$Omega(varepsilon2)$でアダマール符号を正しく復号する単純な量子回路を与える。
論文 参考訳(メタデータ) (2023-02-06T15:37:32Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
本稿では,1次元に制約された量子ビット格子の幅と物理閾値の関係について検討する。
我々は、表面コードを用いた最小レベルのエンコーディングでエラーバイアスを設計する。
このバイアスを格子サージャリングサーフェスコードバスを用いて高レベルなエンコーディングで処理する。
論文 参考訳(メタデータ) (2022-12-03T06:16:07Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
複数のコードサイズにわたる論理量子ビット性能のスケーリングの測定について報告する。
超伝導量子ビット系は、量子ビット数の増加による追加誤差を克服するのに十分な性能を有する。
量子誤り訂正は量子ビット数が増加するにつれて性能が向上し始める。
論文 参考訳(メタデータ) (2022-07-13T18:00:02Z) - Pauli channels can be estimated from syndrome measurements in quantum
error correction [0.7264378254137809]
安定化符号を用いて、純距離で与えられる多くの量子ビット間の相関関係を持つパウリチャネルを推定できることを示す。
また、量子データシンドローム符号のフレームワーク内での誤差の測定も可能である。
この研究が、デコーダのオンライン適応のような興味深い応用を時間変化ノイズに開放することを期待しています。
論文 参考訳(メタデータ) (2021-07-29T18:01:10Z) - Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding [45.66971406567023]
bits-backは、およその後方と真の後方の間のKLの発散に等しい増加に苦しむ。
より厳密な変動境界からビットバック符号化アルゴリズムを導出することにより、このギャップを取り除く方法を示す。
論文 参考訳(メタデータ) (2021-02-22T14:58:01Z) - Trade-offs on number and phase shift resilience in bosonic quantum codes [10.66048003460524]
1つの量子エラー補正ソリューションは、量子情報を1つ以上のボゾンモードにエンコードすることである。
任意に多くのモードを用いることで、$g$gappedのマルチモード符号が量子誤り訂正符号に近似できることを示す。
論文 参考訳(メタデータ) (2020-08-28T10:44:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。