論文の概要: Doubly Non-Central Beta Matrix Factorization for Stable Dimensionality Reduction of Bounded Support Matrix Data
- arxiv url: http://arxiv.org/abs/2410.18425v1
- Date: Thu, 24 Oct 2024 04:24:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:49:20.088645
- Title: Doubly Non-Central Beta Matrix Factorization for Stable Dimensionality Reduction of Bounded Support Matrix Data
- Title(参考訳): 境界支持行列データの安定次元化のための二重非中央ベータ行列分解法
- Authors: Anjali N. Albert, Patrick Flaherty, Aaron Schein,
- Abstract要約: データ行列をタッカー表現に分解し、構成因子行列の列数が制約されないようにする。
タッカー分解のための計算効率の良いサンプリングアルゴリズムを導出する。
安定性の向上により、科学的仮説の生成とテストに構成因子が使用される場合の信頼性が向上する。
- 参考スコア(独自算出の注目度): 1.9867801428140066
- License:
- Abstract: We consider the problem of developing interpretable and computationally efficient matrix decomposition methods for matrices whose entries have bounded support. Such matrices are found in large-scale DNA methylation studies and many other settings. Our approach decomposes the data matrix into a Tucker representation wherein the number of columns in the constituent factor matrices is not constrained. We derive a computationally efficient sampling algorithm to solve for the Tucker decomposition. We evaluate the performance of our method using three criteria: predictability, computability, and stability. Empirical results show that our method has similar performance as other state-of-the-art approaches in terms of held-out prediction and computational complexity, but has significantly better performance in terms of stability to changes in hyper-parameters. The improved stability results in higher confidence in the results in applications where the constituent factors are used to generate and test scientific hypotheses such as DNA methylation analysis of cancer samples.
- Abstract(参考訳): 本稿では,パラメータが有界な行列に対して,解釈可能かつ計算効率のよい行列分解法を開発することの問題点を考察する。
このような行列は、大規模なDNAメチル化研究やその他の多くの設定で見られる。
提案手法では,データ行列をタッカー表現に分解し,構成因子行列の列数が制約されないようにする。
タッカー分解のための計算効率の良いサンプリングアルゴリズムを導出する。
予測可能性,計算可能性,安定性の3つの基準を用いて,本手法の性能評価を行った。
実験結果から,本手法はホールドアウト予測や計算複雑性の観点からは,他の最先端手法と同等の性能を示すが,過度パラメータの変化に対する安定性は著しく向上していることがわかった。
安定性の向上は、がんサンプルのDNAメチル化分析などの科学的仮説の生成とテストに構成因子を使用する場合の信頼性を高める。
関連論文リスト
- Statistical Inference For Noisy Matrix Completion Incorporating Auxiliary Information [3.9748528039819977]
本稿では,半教師付きモデルにおける雑音行列補完の統計的推測について検討する。
検討した文脈において,反復最小二乗(LS)推定手法を適用した。
提案手法は数回の反復しか必要とせず、結果として得られる低ランク行列と係数行列のエントリーワイズ推定器は正規分布を持つことが保証されている。
論文 参考訳(メタデータ) (2024-03-22T01:06:36Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - On confidence intervals for precision matrices and the
eigendecomposition of covariance matrices [20.20416580970697]
本稿では,固定次元の共分散行列の固有ベクトルの個々のエントリに対する信頼性境界の計算に挑戦する。
逆共分散行列、いわゆる精度行列の成分を束縛する手法を導出する。
これらの結果の応用として,精度行列の非ゼロ値のテストを可能にする新しい統計テストを示す。
論文 参考訳(メタデータ) (2022-08-25T10:12:53Z) - Variance Reduction for Matrix Computations with Applications to Gaussian
Processes [0.0]
本稿では,行列分解による行列計算の分散化に着目する。
行列の平方根因数分解の計算は、いくつかの重要な場合において、任意により良い性能が得られることを示す。
論文 参考訳(メタデータ) (2021-06-28T10:41:22Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
我々は弱い教師付き回帰問題を解く。
weakly"の下では、いくつかのトレーニングポイントではラベルが知られ、未知のものもあれば、無作為なノイズの存在やリソースの欠如などの理由によって不確かであることが分かっています。
数値的な節ではモンテカルロモデルを用いて提案手法を人工と実のデータセットに適用した。
論文 参考訳(メタデータ) (2021-04-13T23:21:01Z) - Adversarially-Trained Nonnegative Matrix Factorization [77.34726150561087]
非負行列ファクタリゼーションの逆学習版を検討する。
我々の定式化では、攻撃者は与えられたデータ行列に有界ノルムの任意の行列を追加する。
辞書と係数行列を最適化するために, 逆学習に触発された効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-04-10T13:13:17Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
本稿では,FNMF(Feature weighted Non- negative Matrix Factorization)を提案する。
FNMFはその重要性に応じて特徴の重みを適応的に学習する。
提案する最適化アルゴリズムを用いて効率的に解くことができる。
論文 参考訳(メタデータ) (2021-03-24T21:17:17Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
ロバスト低ランク行列補完(RMC)は、コンピュータビジョン、信号処理、機械学習アプリケーションのために広く研究されている。
この問題は、部分的に観察された行列を低ランク行列とスパース行列の重ね合わせに分解することを目的とした。
RMCに取り組むために広く用いられるアプローチは、低ランク行列の核ノルム(低ランク性を促進するために)とスパース行列のl1ノルム(空間性を促進するために)を最小化する凸定式化を考えることである。
本稿では、近年のローワークの動機付けについて述べる。
論文 参考訳(メタデータ) (2020-08-18T04:46:22Z) - Covariance Estimation for Matrix-valued Data [9.739753590548796]
本研究では,高次元行列データに対する分布自由正規化共分散推定法を提案する。
我々は、バンド可能な共分散を推定するための統一的な枠組みを定式化し、ランク1の制約のないクロネッカー積近似に基づく効率的なアルゴリズムを導入する。
格子状温度異常データセットとS&P 500ストックデータ解析によるシミュレーションと実応用を用いて,本手法の優れた有限サンプル性能を実証した。
論文 参考訳(メタデータ) (2020-04-11T02:15:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。