論文の概要: Fast pseudothermalization
- arxiv url: http://arxiv.org/abs/2411.03974v2
- Date: Sun, 10 Nov 2024 13:12:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:07:24.325717
- Title: Fast pseudothermalization
- Title(参考訳): 高速擬熱処理
- Authors: Wonjun Lee, Hyukjoon Kwon, Gil Young Cho,
- Abstract要約: 小資源の「擬似量子」を「擬似量子」と呼ぶ。
我々は$omega(log n)cdot O(t[log t]2)$ depth circuitsのみを必要とする実装を提案する。
これは私たちの知識を最大限に活用するために擬似ランダム状態を生成することで知られている最速の方法です。
- 参考スコア(独自算出の注目度): 5.835366072870476
- License:
- Abstract: Quantum resources like entanglement and magic are essential for characterizing the complexity of quantum states. However, when the number of copies of quantum states and the computational time are limited by numbers polynomial in the system size $n$, accurate estimation of the amount of these resources becomes difficult. This makes it impossible to distinguish between ensembles of states with relatively small resources and one that has nearly maximal resources. Such ensembles with small resources are referred to as "pseudo-quantum" ensembles. Recent studies have introduced an ensemble known as the random subset phase state ensemble, which is pseudo-entangled, pseudo-magical, and pseudorandom. While the current state-of-the-art implementation of this ensemble is conjectured to be realized by a circuit with $O(nt)$ depth, it is still too deep for near-term quantum devices to execute for small $t$. In addition, the strict linear dependence on $t$ has only been established as a lower bound on the circuit depth. In this work, we present significantly improved implementations that only require $\omega(\log n)\cdot O(t[\log t]^2)$ depth circuits, which almost saturates the theoretical lower bound. This is also the fastest known for generating pseudorandom states to the best of our knowledge. We believe that our findings will facilitate the implementation of pseudo-ensembles on near-term devices, allowing executions of tasks that would otherwise require ensembles with maximal quantum resources, by generating pseudo-ensembles at a super-polynomially fewer number of entangling and non-Clifford gates.
- Abstract(参考訳): 絡み合いや魔法のような量子資源は、量子状態の複雑さを特徴づけるのに不可欠である。
しかし、量子状態のコピー数と計算時間がシステムサイズ$n$の数値多項式によって制限されると、これらの資源の正確な推定が困難になる。
これにより、比較的小さな資源を持つ状態と、最大に近いリソースを持つ状態のアンサンブルを区別することは不可能である。
このような小さな資源を持つアンサンブルは「擬似量子アンサンブル」と呼ばれる。
近年の研究では、ランダムサブセット位相状態アンサンブルと呼ばれるアンサンブルが導入されている。
このアンサンブルの現在の最先端の実装は、$O(nt)$ depthの回路によって実現されると推測されているが、それでも短期量子デバイスが小さな$t$で実行するには遠すぎる。
さらに、$t$に対する厳密な線形依存は、回路深さの低い境界としてのみ確立されている。
本研究では,$\omega(\log n)\cdot O(t[\log t]^2)$ 深度回路のみを必要とする実装を大幅に改善し,理論的な下界をほぼ飽和させることを示す。
これは、私たちの知識の最高に擬似ランダムな状態を生成することでも知られている、最速の方法です。
我々の発見は,超ポリノミカルに少ないエンタングリングと非クリフォードゲートで擬似アンサンブルを生成することで,最小の量子資源とのアンサンブルを必要とするタスクの実行を可能とし,近距離デバイス上で擬似アンサンブルの実装を促進すると信じている。
関連論文リスト
- Learning quantum states prepared by shallow circuits in polynomial time [1.127500169412367]
有限次元格子上に$vertpsirangle$を作成する定数深さ量子回路を学習する。
このアルゴリズムは、$U$の深さが$mathrmpolylog(n)$であり、準多項式実行時である場合に拡張される。
応用として、格子上の未知の量子状態が量子回路の複雑さが低いか高いかをテストするための効率的なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2024-10-31T04:12:49Z) - The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
非負の振幅を持つ非絡み合った量子証明のパワー、つまり $textQMA+(2)$ を表すクラスについて研究する。
特に,小集合拡張,ユニークなゲーム,PCP検証のためのグローバルプロトコルを設計する。
QMA(2) が $textQMA+(2)$ に等しいことを示す。
論文 参考訳(メタデータ) (2024-02-29T01:35:46Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
量子コンピュータの候補は、量子システムの低温特性をシミュレートすることである。
本稿は、ほとんどのランダムハミルトニアンに対して、最大混合状態は十分に良い試行状態であることを示す。
位相推定は、基底エネルギーに近いエネルギーの状態を効率的に生成する。
論文 参考訳(メタデータ) (2023-02-07T10:57:36Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
この研究は、局所量子回路の出力分布の学習可能性に関する広範な評価を提供する。
ハイブリッド量子古典アルゴリズムを含む多種多様な学習アルゴリズムにおいて、深度$d=omega(log(n))$ Clifford回路に関連する生成的モデリング問題さえも困難であることを示す。
論文 参考訳(メタデータ) (2022-07-07T08:04:15Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
回路レベルの実装とリソース推定を行い、古典データの高密度な$Ntimes N$行列をブロックエンコードして$epsilon$を精度良くすることができる。
異なるアプローチ間のリソーストレードオフを調査し、量子ランダムアクセスメモリ(QRAM)の2つの異なるモデルの実装を検討する。
我々の結果は、単純なクエリの複雑さを超えて、大量の古典的データが量子アルゴリズムにアクセスできると仮定された場合のリソースコストの明確な図を提供する。
論文 参考訳(メタデータ) (2022-06-07T18:00:01Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vaziraniアルゴリズムは、オラクルに符号化されたビット文字列を決定できる。
我々はベルンシュタイン・ヴァジラニアルゴリズムの量子資源を詳細に分析する。
絡み合いがない場合、初期状態における量子コヒーレンス量とアルゴリズムの性能が直接関係していることが示される。
論文 参考訳(メタデータ) (2022-05-26T20:32:36Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
我々は、$Theta(n)$-depth回路は、$O(ndlog d)$ acillary qubitsを持つ$Theta(log(nd))で作成可能であることを示す。
我々は、ハミルトンシミュレーション、方程式の線形系解法、量子ランダムアクセスメモリの実現など、異なる量子コンピューティングタスクにおける結果の適用について論じる。
論文 参考訳(メタデータ) (2022-01-27T13:16:30Z) - K-sparse Pure State Tomography with Phase Estimation [1.2183405753834557]
純状態の再構成のための量子状態トモグラフィ(QST)は、キュービット数で資源と測定を指数的に増加させる必要がある。
特定の測定セットにおける$n$bitsの異なる計算基底状態の重ね合わせからなる純状態のQST再構成を示す。
論文 参考訳(メタデータ) (2021-11-08T09:43:12Z) - Deterministic and Entanglement-Efficient Preparation of
Amplitude-Encoded Quantum Registers [0.533024001730262]
古典ベクトル $mathbfb$ は量子状態の振幅で符号化される。
任意の状態の$Q$ qubitsは通常、約2Q$のエンタングゲートを必要とする。
状態準備に必要な量子資源を柔軟に削減できる決定論的(非変分法)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-10-26T07:37:54Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
本稿では、生成した状態の古典的ベクトル形式を生成する効率的な読み出しプロトコルを提案する。
我々のプロトコルは、出力状態が入力行列の行空間にある場合に適合する。
我々の技術ツールの1つは、Gram-Schmidt正則手順を実行するための効率的な量子アルゴリズムである。
論文 参考訳(メタデータ) (2020-04-14T11:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。