論文の概要: Counterfactual Uncertainty Quantification of Factual Estimand of Efficacy from Before-and-After Treatment Repeated Measures Randomized Controlled Trials
- arxiv url: http://arxiv.org/abs/2411.09635v3
- Date: Fri, 17 Jan 2025 16:11:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:58:18.426805
- Title: Counterfactual Uncertainty Quantification of Factual Estimand of Efficacy from Before-and-After Treatment Repeated Measures Randomized Controlled Trials
- Title(参考訳): ランダム化試験を無作為化した前・後処理による実効性評価の不確実性定量化
- Authors: Xingya Wang, Yang Han, Yushi Liu, Szu-Yu Tang, Jason C. Hsu,
- Abstract要約: 本稿では、実測点推定の不確実性を定量化する$textitcounterfactual$ uncertainty Quantification (CUQ)を示すが、反実的な設定では達成可能である。
我々は、ETZと呼ばれる新しい統計モデリング原理を作成することにより、現実のUQよりも変動性が小さいCUQを実現する。
我々は,標準回帰仮定に反する測定誤差のある予測器の使用に注意を喚起し,治療効果を推定するために$textitattenuation$を発生させる可能性がある。
- 参考スコア(独自算出の注目度): 1.3461364647443341
- License:
- Abstract: The ideal estimand for comparing treatment $Rx$ with a control $C$ is the $\textit{counterfactual}$ efficacy $Rx:C$, the expected differential outcome between $Rx$ and $C$ if each patient were given $\textit{both}$. One hundred years ago, Neyman (1923a) proved unbiased $\textit{point estimation}$ of counterfactual efficacy from designed $\textit{factual}$ experiments is achievable. But he left the determination of how much might the counterfactual variance of this estimate be smaller than the factual variance as an open challenge. This article shows $\textit{counterfactual}$ uncertainty quantification (CUQ), quantifying uncertainty for factual point estimates but in a counterfactual setting, is achievable for Randomized Controlled Trials (RCTs) with Before-and-After treatment Repeated Measures which are common in many therapeutic areas. We achieve CUQ whose variability is typically smaller than factual UQ by creating a new statistical modeling principle called ETZ. We urge caution in using predictors with measurement error which violates standard regression assumption and can cause $\textit{attenuation}$ in estimating treatment effects. Fortunately, we prove that, for traditional medicine in general, and for targeted therapy with efficacy defined as averaged over the population, counterfactual point estimation is unbiased. However, for both Real Human and Digital Twins approaches, predicting treatment effect in $\textit{subgroups}$ may have attenuation bias.
- Abstract(参考訳): Rx$ とコントロール $C$ を比較する理想的な方法は $\textit{counterfactual}$ effect $Rx:C$ であり、各患者に $\textit{both}$ が与えられた場合、期待される $Rx$ と $C$ の差分結果である。
100年前、Neyman (1923a)は、設計した$\textit{factual}$実験から、非バイアスの$\textit{point Estimation}$の反ファクト効果が達成可能であることを証明した。
しかし彼は、この推定の反実的分散が、オープンチャレンジとしての事実的分散よりもどれほど小さいかという決定を残した。
本稿では, 実測点推定の不確実性を定量化する「$\textit{counterfactual}$ uncertainty Quantification(CUQ)」について述べる。
我々は、ETZと呼ばれる新しい統計モデリング原理を作成することにより、現実のUQよりも変動性が小さいCUQを実現する。
我々は、標準回帰仮定に反する測定誤差を持つ予測器の使用に注意を喚起し、治療効果を推定する際に$\textit{attenuation}$を生じる可能性がある。
幸いなことに、従来の医学全般や、人口平均で定義された有効性による標的治療については、偽物点推定が偏りがないことが証明されている。
しかし、Real HumanとDigital Twinsの両方のアプローチでは、$\textit{subgroups}$の処理効果を予測することは減衰バイアスを持つ可能性がある。
関連論文リスト
- Mind the Gap: A Causal Perspective on Bias Amplification in Prediction & Decision-Making [58.06306331390586]
本稿では,閾値演算による予測値がS$変化の程度を測るマージン補数の概念を導入する。
適切な因果仮定の下では、予測スコア$S$に対する$X$の影響は、真の結果$Y$に対する$X$の影響に等しいことを示す。
論文 参考訳(メタデータ) (2024-05-24T11:22:19Z) - The out-of-sample $R^2$: estimation and inference [0.0]
2つの予測モデルの比較として、アウト・オブ・サンプルの$R2$を定義する。
我々は、$hatR2$の標準誤差を提供するために、データ分割推定の不確実性に関する最近の理論的進歩を利用する。
論文 参考訳(メタデータ) (2023-02-10T09:29:57Z) - Robust computation of optimal transport by $\beta$-potential
regularization [79.24513412588745]
最適輸送(OT)は、確率分布間の差を測定する機械学習分野で広く使われているツールである。
我々は、いわゆる$beta$-divergenceに付随するベータポテンシャル項でOTを正規化することを提案する。
提案アルゴリズムで計算した輸送行列は,外乱が存在する場合でも確率分布を頑健に推定するのに役立つことを実験的に実証した。
論文 参考訳(メタデータ) (2022-12-26T18:37:28Z) - The Projected Covariance Measure for assumption-lean variable significance testing [3.8936058127056357]
単純だが一般的なアプローチは、線形モデルを指定し、次に$X$の回帰係数が 0 でないかどうかをテストすることである。
条件付き平均独立性のモデルフリーなnullをテストする問題、すなわち条件付き平均の$Y$$$X$と$Z$は$X$に依存しない。
本稿では,加法モデルやランダムフォレストなど,柔軟な非パラメトリックあるいは機械学習手法を活用可能な,シンプルで汎用的なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-03T17:55:50Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
条件平均治療効果(CATE)は、個々の因果効果の最適点予測である。
集約分析では、通常は分布処理効果(DTE)の測定によって対処される。
我々は,多種多様な問題に対して条件付きDTE(CDTE)を学習するための,新しい堅牢でモデルに依存しない手法を提供する。
論文 参考訳(メタデータ) (2022-05-23T17:40:31Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
ランダム化制御試験(RCT)における治療効果の客観的評価における中心的な障害は、その性能をテストするための基礎的真理(または検証セット)の欠如である。
この課題に対処するための新しいクロスバリデーションのような方法論を提供する。
本手法は,Amazonサプライチェーンに実装された709RCTに対して評価を行った。
論文 参考訳(メタデータ) (2021-12-14T17:53:01Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
実用データセットに対する予測の偏見を回避し、頻繁な不確実性を推定する改善された手法を開発している。
私たちの主な貢献は、推定と推論の計算時間をマグニチュードの順序で短縮する収束保証付き信号強度の推定器SLOEです。
論文 参考訳(メタデータ) (2021-03-23T17:48:56Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z) - Dimension-agnostic inference using cross U-statistics [33.17951971728784]
本稿では,サンプル分割と自己正規化とともに,既存のテスト統計の変分表現を用いた手法を提案する。
結果の統計学は、縮退したU統計を慎重に修正し、対角ブロックを落とし、対角ブロックを外したままにすると見なすことができる。
論文 参考訳(メタデータ) (2020-11-10T12:21:34Z) - High-Dimensional Feature Selection for Sample Efficient Treatment Effect
Estimation [0.0]
因果的データから因果的治療効果を推定することは因果的推論の根本的な問題である。
治療コホートにまたがる結果を含む共通の目的関数を提案する。
治療効果評価実験により,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-11-03T19:54:16Z) - The Counterfactual $\chi$-GAN [20.42556178617068]
因果推論は、しばしば、治療の割り当てが結果から独立していることを要求する反ファクト的枠組みに依存する。
本研究は,CGAN(Counterfactual $chi$-GAN)と呼ばれるGAN(Generative Adversarial Network)に基づくモデルを提案する。
論文 参考訳(メタデータ) (2020-01-09T17:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。