論文の概要: Boundary-Decoder network for inverse prediction of capacitor electrostatic analysis
- arxiv url: http://arxiv.org/abs/2412.00113v1
- Date: Thu, 28 Nov 2024 05:51:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:47:55.053003
- Title: Boundary-Decoder network for inverse prediction of capacitor electrostatic analysis
- Title(参考訳): キャパシタ静電解析の逆予測のための境界デコーダネットワーク
- Authors: Kart-Leong Lim, Rahul Dutta, Mihai Rotaru,
- Abstract要約: 境界条件に対するパラメータ変化をモデル化するためのエンドツーエンドのディープラーニング手法を提案する。
提案手法は, 動的境界条件下でのバニラ深層学習 (NN) と物理情報ニューラルネット (PINN) の両方を著しく上回り得ることを示す。
- 参考スコア(独自算出の注目度): 0.49157446832511503
- License:
- Abstract: Traditional electrostatic simulation are meshed-based methods which convert partial differential equations into an algebraic system of equations and their solutions are approximated through numerical methods. These methods are time consuming and any changes in their initial or boundary conditions will require solving the numerical problem again. Newer computational methods such as the physics informed neural net (PINN) similarly require re-training when boundary conditions changes. In this work, we propose an end-to-end deep learning approach to model parameter changes to the boundary conditions. The proposed method is demonstrated on the test problem of a long air-filled capacitor structure. The proposed approach is compared to plain vanilla deep learning (NN) and PINN. It is shown that our method can significantly outperform both NN and PINN under dynamic boundary condition as well as retaining its full capability as a forward model.
- Abstract(参考訳): 従来の静電シミュレーションは、偏微分方程式を方程式の代数系に変換するメッシュ式に基づく手法であり、それらの解は数値的手法によって近似される。
これらの手法は時間がかかり、初期あるいは境界条件の変化は、再び数値的な問題を解く必要がある。
物理情報ニューラルネット(PINN)のような新しい計算手法も、境界条件が変化すると再学習を必要とする。
本研究では,境界条件に対するパラメータ変化をモデル化するエンド・ツー・エンドのディープラーニング手法を提案する。
提案手法は, 長期空気充填キャパシタ構造の試験問題に対して実証された。
提案手法は, 平易なバニラ深層学習(NN)とPINNと比較される。
提案手法は, 動的境界条件下でのNNとPINNの両性能を著しく向上させるとともに, 前方モデルとしての全機能を維持することができることを示す。
関連論文リスト
- Stiff Transfer Learning for Physics-Informed Neural Networks [1.5361702135159845]
本研究では, 物理インフォームドニューラルネットワーク(STL-PINN)の高次常微分方程式 (ODE) と偏微分方程式 (PDE) に挑戦する新しい手法を提案する。
提案手法は, マルチヘッドPINNを低剛性体制で訓練し, トランスファーラーニングにより高剛性体制で最終解を得る。
これにより、PINNの剛性に関連する障害モードに対処し、「ワンショット」ソリューションを計算することで計算効率を維持できる。
論文 参考訳(メタデータ) (2025-01-28T20:27:38Z) - FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
偏微分方程式で記述された技術システムの数値シミュレーションと最適化は高価である。
この文脈で比較的新しいアプローチは、ニューラルネットワークの優れた近似特性と古典的有限要素法を組み合わせることである。
本稿では, この手法を, サドルポイント問題と非線形流体力学問題に拡張する。
論文 参考訳(メタデータ) (2024-09-06T07:17:01Z) - Neural Networks-based Random Vortex Methods for Modelling Incompressible Flows [0.0]
本稿では,(2D)非圧縮性ナビエ-ストークス方程式に対する解を近似するためのニューラルネットワークに基づく新しい手法を提案する。
我々のアルゴリズムはニューラルネットワーク(NN)を用いており、ランダム渦ダイナミクスの計算効率の良い定式化を利用する損失関数に基づいて渦性を近似している。
論文 参考訳(メタデータ) (2024-05-22T14:36:23Z) - Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks [68.8204255655161]
パラメトリゼーションを必要とせず, 種々の測地における定常ナビエ-ストークス方程式の近似解を学習する手法を提案する。
物理を意識したCNNの結果は、最先端のデータベースアプローチと比較される。
論文 参考訳(メタデータ) (2023-08-04T05:09:06Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
バナジウムフローバッテリ(VRFB)のゼロ次元(0D)モデルにおけるパラメータ推定のための物理拘束型ディープニューラルネットワーク(PCDNN)を提案する。
そこで, PCDNN法は, 動作条件のモデルパラメータを推定し, 電圧の0Dモデル予測を改善することができることを示す。
また,PCDNNアプローチでは,トレーニングに使用しない操作条件のパラメータ値を推定する一般化能力が向上することが実証された。
論文 参考訳(メタデータ) (2021-06-21T23:42:58Z) - Exact imposition of boundary conditions with distance functions in
physics-informed deep neural networks [0.5804039129951741]
本稿では,偏微分方程式の深層学習におけるトレーニングを改善するために,人工ニューラルネットワークにおける幾何対応トライアル関数を提案する。
均質なディリクレ境界条件を正確に課すために、トライアル関数は、PINN近似により$phi$と乗算される。
アフィン境界と曲線境界を持つ領域上の線形および非線形境界値問題に対する数値解を提案する。
論文 参考訳(メタデータ) (2021-04-17T03:02:52Z) - Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs [71.26657499537366]
本稿では,ニューラルネットワークモデルにおける勾配の効率的な近似法を提案する。
我々は、分類、密度推定、推論近似タスクにおいて、ニューラルODEをトレーニングするリバースダイナミック手法と比較する。
論文 参考訳(メタデータ) (2020-03-11T13:15:57Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
貯水池モデリングのためのハイブリッド物理に基づく機械学習手法を提案する。
この手法は、物理に基づく正則化を伴う一連の深い敵対的ニューラルネットワークアーキテクチャに依存している。
提案手法は,物理知識を機械学習アルゴリズムに応用するためのシンプルでエレガントな手法である。
論文 参考訳(メタデータ) (2020-01-15T08:20:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。