論文の概要: Stiff Transfer Learning for Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2501.17281v1
- Date: Tue, 28 Jan 2025 20:27:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:53:07.391326
- Title: Stiff Transfer Learning for Physics-Informed Neural Networks
- Title(参考訳): 物理インフォームドニューラルネットワークの剛性伝達学習
- Authors: Emilien Seiler, Wanzhou Lei, Pavlos Protopapas,
- Abstract要約: 本研究では, 物理インフォームドニューラルネットワーク(STL-PINN)の高次常微分方程式 (ODE) と偏微分方程式 (PDE) に挑戦する新しい手法を提案する。
提案手法は, マルチヘッドPINNを低剛性体制で訓練し, トランスファーラーニングにより高剛性体制で最終解を得る。
これにより、PINNの剛性に関連する障害モードに対処し、「ワンショット」ソリューションを計算することで計算効率を維持できる。
- 参考スコア(独自算出の注目度): 1.5361702135159845
- License:
- Abstract: Stiff differential equations are prevalent in various scientific domains, posing significant challenges due to the disparate time scales of their components. As computational power grows, physics-informed neural networks (PINNs) have led to significant improvements in modeling physical processes described by differential equations. Despite their promising outcomes, vanilla PINNs face limitations when dealing with stiff systems, known as failure modes. In response, we propose a novel approach, stiff transfer learning for physics-informed neural networks (STL-PINNs), to effectively tackle stiff ordinary differential equations (ODEs) and partial differential equations (PDEs). Our methodology involves training a Multi-Head-PINN in a low-stiff regime, and obtaining the final solution in a high stiff regime by transfer learning. This addresses the failure modes related to stiffness in PINNs while maintaining computational efficiency by computing "one-shot" solutions. The proposed approach demonstrates superior accuracy and speed compared to PINNs-based methods, as well as comparable computational efficiency with implicit numerical methods in solving stiff-parameterized linear and polynomial nonlinear ODEs and PDEs under stiff conditions. Furthermore, we demonstrate the scalability of such an approach and the superior speed it offers for simulations involving initial conditions and forcing function reparametrization.
- Abstract(参考訳): 剛微分方程式は様々な科学領域で一般的であり、成分の異なる時間スケールのために大きな課題を生んでいる。
計算力の増大に伴い、物理学情報ニューラルネットワーク(PINN)は微分方程式によって記述された物理過程のモデリングにおいて大幅に改善されている。
有望な結果にもかかわらず、バニラPINNは障害モードとして知られる厳格なシステムを扱う際に制限に直面している。
そこで本研究では,物理インフォームドニューラルネットワーク(STL-PINN)の厳密な伝達学習手法を提案し,剛性常微分方程式(ODE)と偏微分方程式(PDE)を効果的に扱う。
提案手法は, マルチヘッドPINNを低剛性体制で訓練し, トランスファーラーニングにより高剛性体制で最終解を得る。
これにより、PINNの剛性に関連する障害モードに対処し、「ワンショット」ソリューションを計算することで計算効率を維持できる。
提案手法は, PINN法に比べて精度と速度が優れており, 剛性条件下での線形および多項式非線形直列およびPDEの解法において, 暗黙的数値法と同等の計算効率を示す。
さらに、そのようなアプローチのスケーラビリティと、初期条件と関数の再パラメータ化を強制するシミュレーションのための優れた速度を実証する。
関連論文リスト
- An efficient wavelet-based physics-informed neural networks for singularly perturbed problems [0.0]
物理インフォームドニューラルネットワーク(英: Physics-informed Neural Network, PINN)は、物理学を微分方程式の形で利用し、複雑な問題に対処する深層学習モデルである。
本稿では, ウェーブレットに基づくPINNモデルを用いて, 急激な振動, 急勾配, 特異な挙動を持つ微分方程式の解に挑戦する。
提案手法は、従来のPINN、最近開発されたウェーブレットベースのPINN、その他の最先端の手法で大幅に改善される。
論文 参考訳(メタデータ) (2024-09-18T10:01:37Z) - A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
物理駆動型グラフSAGE法は不規則なPDEによって支配される問題を解くために提案される。
距離関連エッジ機能と特徴マッピング戦略は、トレーニングと収束を支援するために考案された。
ガウス特異性ランダム場源によりパラメータ化された熱伝導問題に対するロバストPDEサロゲートモデルの構築に成功した。
論文 参考訳(メタデータ) (2024-03-13T14:25:15Z) - Enriched Physics-informed Neural Networks for Dynamic
Poisson-Nernst-Planck Systems [0.8192907805418583]
本稿では、動的Poisson-Nernst-Planck(PNP)方程式を解くために、メッシュレス深層学習アルゴリズム、EPINN(enriched Physics-informed Neural Network)を提案する。
EPINNは、従来の物理インフォームドニューラルネットワークを基盤フレームワークとして、損失関数のバランスをとるために適応的な損失重みを追加する。
数値計算の結果, 結合された非線形系の解法において, 従来の数値法よりも適用性が高いことがわかった。
論文 参考訳(メタデータ) (2024-02-01T02:57:07Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。