論文の概要: Mathematics of Digital Twins and Transfer Learning for PDE Models
- arxiv url: http://arxiv.org/abs/2501.06400v1
- Date: Sat, 11 Jan 2025 01:14:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:27:17.427225
- Title: Mathematics of Digital Twins and Transfer Learning for PDE Models
- Title(参考訳): ディジタル双対の数学とPDEモデルの伝達学習
- Authors: Yifei Zong, Alexandre Tartakovsky,
- Abstract要約: 偏微分方程式(PDE)によって支配される物理系のディジタル双対(DT)を定義する。
我々はKL-NN(Karhunen-Loeve Neural Network)サロゲートモデルと伝達学習(TL)を用いたDTを構築する。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License:
- Abstract: We define a digital twin (DT) of a physical system governed by partial differential equations (PDEs) as a model for real-time simulations and control of the system behavior under changing conditions. We construct DTs using the Karhunen-Lo\`{e}ve Neural Network (KL-NN) surrogate model and transfer learning (TL). The surrogate model allows fast inference and differentiability with respect to control parameters for control and optimization. TL is used to retrain the model for new conditions with minimal additional data. We employ the moment equations to analyze TL and identify parameters that can be transferred to new conditions. The proposed analysis also guides the control variable selection in DT to facilitate efficient TL. For linear PDE problems, the non-transferable parameters in the KL-NN surrogate model can be exactly estimated from a single solution of the PDE corresponding to the mean values of the control variables under new target conditions. Retraining an ML model with a single solution sample is known as one-shot learning, and our analysis shows that the one-shot TL is exact for linear PDEs. For nonlinear PDE problems, transferring of any parameters introduces errors. For a nonlinear diffusion PDE model, we find that for a relatively small range of control variables, some surrogate model parameters can be transferred without introducing a significant error, some can be approximately estimated from the mean-field equation, and the rest can be found using a linear residual least square problem or an ordinary linear least square problem if a small labeled dataset for new conditions is available. The former approach results in a one-shot TL while the latter approach is an example of a few-shot TL. Both methods are approximate for the nonlinear PDEs.
- Abstract(参考訳): 本研究では, 物理系のディジタル双対(DT)を実時間シミュレーションのモデルとして定義し, 変動条件下での系の挙動の制御を行う。
我々はKL-NN(Karhunen-Lo\`{e}ve Neural Network)サロゲートモデルと伝達学習(TL)を用いてDTを構築する。
代理モデルは、制御と最適化のための制御パラメータに関して、高速な推論と微分可能性を可能にする。
TLは、最小限の追加データで新しい条件でモデルを再訓練するために使用される。
我々はモーメント方程式を用いてTLを解析し、新しい条件に移動可能なパラメータを同定する。
提案手法は,効率的なTLを実現するためにDTにおける制御変数の選択を誘導する。
線形PDE問題に対して、KL-NNサロゲートモデルの非伝達パラメータは、新しいターゲット条件下での制御変数の平均値に対応するPDEの単一解から正確に推定することができる。
単一解サンプルを用いたMLモデルのトレーニングはワンショット学習と呼ばれ, 解析により, ワンショットTLは線形PDEに対して正確であることが示された。
非線形PDE問題では、任意のパラメータの転送がエラーを引き起こす。
非線形拡散PDEモデルでは、比較的少数の制御変数に対して、いくつかの代理モデルパラメータを有意な誤差を伴わずに転送することができ、いくつかは平均場方程式から推定でき、残りは、新しい条件に対する小さなラベル付きデータセットが利用可能であれば、線形最小二乗問題または通常の線形最小二乗問題を用いて見つけることができる。
前者のアプローチはワンショットTLとなり、後者のアプローチは数ショットTLの例である。
どちらの手法も非線形PDEに近似する。
関連論文リスト
- Self-supervised Pretraining for Partial Differential Equations [0.0]
本稿では、トランスフォーマーに基づくニューラルネットワークアーキテクチャの最近の進歩を活用し、ニューラルPDEソルバを構築するための新しいアプローチについて述べる。
我々のモデルは、ネットワークを再トレーニングすることなく、PDEパラメータの異なる値に対するソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-07-03T16:39:32Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - Reduced-order modeling for parameterized PDEs via implicit neural
representations [4.135710717238787]
我々は、パラメータ化偏微分方程式(PDE)を効率的に解くために、新しいデータ駆動型低次モデリング手法を提案する。
提案フレームワークは、PDEを符号化し、パラメトリゼーションニューラルネットワーク(PNODE)を用いて、複数のPDEパラメータを特徴とする潜時ダイナミクスを学習する。
我々は,提案手法を大規模なレイノルズ数で評価し,O(103)の高速化と,基底真理値に対する1%の誤差を得る。
論文 参考訳(メタデータ) (2023-11-28T01:35:06Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Neural Control of Parametric Solutions for High-dimensional Evolution
PDEs [6.649496716171139]
我々は進化偏微分方程式(PDE)の解演算子を近似する新しい計算フレームワークを開発する。
パラメータ空間における制御ベクトル場を学習することにより,PDEの解演算子を近似する。
これにより計算コストを大幅に削減し、任意の初期条件で進化PDEを解くことができる。
論文 参考訳(メタデータ) (2023-01-31T19:26:25Z) - Meta-PDE: Learning to Solve PDEs Quickly Without a Mesh [24.572840023107574]
偏微分方程式(PDE)は、しばしば計算的に解くのが難しい。
本稿では,関連するPDEの分布から,問題の迅速な解法を学習するメタラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-11-03T06:17:52Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Probabilistic learning on manifolds constrained by nonlinear partial
differential equations for small datasets [0.0]
The Probabilistic Learning on Manifolds (PLoM) の新たな拡張について紹介する。
これにより、幅広い非線形境界値問題に対する解を合成することができる。
3つのアプリケーションが提示されます。
論文 参考訳(メタデータ) (2020-10-27T14:34:54Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
変分法による離散的グラフィカルモデルの推論は困難である。
エビデンス・ロウアーバウンド(ELBO)を推定するためのサンプリングに基づく多くの手法が提案されている。
Sum Product Networks (SPN) のような確率的回路モデルのトラクタビリティを活用する新しい手法を提案する。
選択的SPNが表現的変動分布として適していることを示し、対象モデルの対数密度が重み付けされた場合、対応するELBOを解析的に計算可能であることを示す。
論文 参考訳(メタデータ) (2020-10-22T05:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。