論文の概要: Data-driven system identification using quadratic embeddings of nonlinear dynamics
- arxiv url: http://arxiv.org/abs/2501.08202v1
- Date: Tue, 14 Jan 2025 15:37:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:26:19.179771
- Title: Data-driven system identification using quadratic embeddings of nonlinear dynamics
- Title(参考訳): 非線形力学の二次埋め込みを用いたデータ駆動システム同定
- Authors: Stefan Klus, Joel-Pascal N'Konzi,
- Abstract要約: 我々はQENDy(Quadratic Embedding of Dynamics)と呼ばれる新しいデータ駆動手法を提案する。
このアプローチは、力学が二次となる高次元の特徴空間へのシステムの埋め込みに基づいている。
本稿では,様々なベンチマーク問題の助けを借りてQENDyの有効性と精度を説明し,その性能をSINDyや2次埋め込みを同定するためのディープラーニング手法と比較する。
- 参考スコア(独自算出の注目度): 0.9714447724811842
- License:
- Abstract: We propose a novel data-driven method called QENDy (Quadratic Embedding of Nonlinear Dynamics) that not only allows us to learn quadratic representations of highly nonlinear dynamical systems, but also to identify the governing equations. The approach is based on an embedding of the system into a higher-dimensional feature space in which the dynamics become quadratic. Just like SINDy (Sparse Identification of Nonlinear Dynamics), our method requires trajectory data, time derivatives for the training data points, which can also be estimated using finite difference approximations, and a set of preselected basis functions, called dictionary. We illustrate the efficacy and accuracy of QENDy with the aid of various benchmark problems and compare its performance with SINDy and a deep learning method for identifying quadratic embeddings. Furthermore, we analyze the convergence of QENDy and SINDy in the infinite data limit, highlight their similarities and main differences, and compare the quadratic embedding with linearization techniques based on the Koopman operator.
- Abstract(参考訳): QENDy(Quadratic Embedding of Non dynamic Dynamics)と呼ばれる新しいデータ駆動手法を提案する。
このアプローチは、力学が二次となる高次元の特徴空間へのシステムの埋め込みに基づいている。
SINDy(Sparse Identification of nonlinear Dynamics)と同様に、この手法には軌道データ、有限差分近似を用いて推定できる訓練データポイントの時間微分、辞書と呼ばれる事前選択された基底関数のセットが必要である。
本稿では,様々なベンチマーク問題の助けを借りてQENDyの有効性と精度を説明し,その性能をSINDyや2次埋め込みを同定するためのディープラーニング手法と比較する。
さらに、無限データ極限におけるQENDyとSINDyの収束を解析し、その類似点と主な相違点を強調し、クープマン作用素に基づく2次埋め込みと線形化手法との比較を行う。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
非線形・雑音・非自律力学系に対する擬似常微分方程式(ODE)モデルを求めることに集中する。
提案手法は,SINDyとSINDy(非線形力学のスパース同定)を結合し,スパースODEの時間変化係数をモデル化する。
論文 参考訳(メタデータ) (2024-10-02T23:00:00Z) - Generalized Quadratic Embeddings for Nonlinear Dynamics using Deep
Learning [11.339982217541822]
本稿では非線形システムの力学をモデル化するためのデータ駆動手法を提案する。
本研究では,昇降原理に着想を得た2次系を共通構造として用いることを提案する。
論文 参考訳(メタデータ) (2022-11-01T10:03:34Z) - Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
本研究では,非線形(時空間)力学の擬似的支配方程式を,定量化された不確実性を伴うスパースノイズデータから同定する枠組みを開発した。
提案アルゴリズムは、正準常微分方程式と偏微分方程式によって制御される複数の非線形力学系に対して評価される。
論文 参考訳(メタデータ) (2022-10-14T20:37:36Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Physics-informed Spline Learning for Nonlinear Dynamics Discovery [8.546520029145853]
非線形ダイナミクスの準同次制御方程式を発見するための物理インフォメーションスプライン学習フレームワークを提案する。
このフレームワークは、わずかにサンプリングされたノイズデータに基づいている。
提案手法の有効性と優位性は,複数の非線形力学系によって実証されている。
論文 参考訳(メタデータ) (2021-05-05T23:32:43Z) - Linear embedding of nonlinear dynamical systems and prospects for
efficient quantum algorithms [74.17312533172291]
有限非線形力学系を無限線型力学系(埋め込み)にマッピングする方法を述べる。
次に、有限線型系 (truncation) による結果の無限線型系を近似するアプローチを検討する。
論文 参考訳(メタデータ) (2020-12-12T00:01:10Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。