論文の概要: Supervised Quadratic Feature Analysis: An Information Geometry Approach to Dimensionality Reduction
- arxiv url: http://arxiv.org/abs/2502.00168v1
- Date: Fri, 31 Jan 2025 21:17:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:21:53.356257
- Title: Supervised Quadratic Feature Analysis: An Information Geometry Approach to Dimensionality Reduction
- Title(参考訳): 教師付き2次元特徴解析:次元化への情報幾何学的アプローチ
- Authors: Daniel Herrera-Esposito, Johannes Burge,
- Abstract要約: 教師付き次元減少は、クラス識別性を最大化しつつ、ラベル付きデータを低次元の特徴空間にマッピングすることを目的としている。
線形特徴学習のための次元還元法であるSupervised Quadratic Feature Analysis (SQFA)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Supervised dimensionality reduction aims to map labeled data to a low-dimensional feature space while maximizing class discriminability. Despite the availability of methods for learning complex non-linear features (e.g. Deep Learning), there is an enduring demand for dimensionality reduction methods that learn linear features due to their interpretability, low computational cost, and broad applicability. However, there is a gap between methods that optimize linear separability (e.g. LDA), and more flexible but computationally expensive methods that optimize over arbitrary class boundaries (e.g. metric-learning methods). Here, we present Supervised Quadratic Feature Analysis (SQFA), a dimensionality reduction method for learning linear features that maximize the differences between class-conditional first- and second-order statistics, which allow for quadratic discrimination. SQFA exploits the information geometry of second-order statistics in the symmetric positive definite manifold. We show that SQFA features support quadratic discriminability in real-world problems. We also provide a theoretical link, based on information geometry, between SQFA and the Quadratic Discriminant Analysis (QDA) classifier.
- Abstract(参考訳): 教師付き次元減少は、クラス識別性を最大化しつつ、ラベル付きデータを低次元の特徴空間にマッピングすることを目的としている。
複雑な非線形特徴を学習する手法(例えばDeep Learning)が利用可能であるにもかかわらず、その解釈可能性、計算コストの低さ、幅広い適用性により線形特徴を学習する次元削減手法には、永続的な需要がある。
しかし、線形分離可能性(例えばLDA)を最適化する手法と、任意のクラス境界(例えばメートル法学習法)を最適化するより柔軟だが計算コストのかかる手法との間にはギャップがある。
本稿では,2次識別が可能なクラス条件付き1次統計値と2次統計値の差を最大化する線形特徴量学習のための次元削減手法であるSupervised Quadratic Feature Analysis (SQFA)を提案する。
SQFAは対称正定値多様体における二階統計量の情報幾何学を利用する。
本研究では,SQFAの特徴が実世界の問題において二次識別性をサポートすることを示す。
また,SQFAと準判別分析(QDA)分類器間の情報幾何学に基づく理論的リンクも提供する。
関連論文リスト
- Geometry-aware Distance Measure for Diverse Hierarchical Structures in Hyperbolic Spaces [48.948334221681684]
双曲空間における幾何対応距離測度を提案し、様々な階層構造に動的に適応する。
我々の手法は、固定距離測定を用いた学習方法よりも一貫して優れている。
可視化は、双曲空間におけるクラス境界の明確化とプロトタイプ分離の改善を示している。
論文 参考訳(メタデータ) (2025-06-23T11:43:39Z) - A Convex formulation for linear discriminant analysis [1.3124513975412255]
本稿では,Convex Linear Discriminant Analysis (ConvexLDA) と呼ばれるディメンタリティ低減手法を提案する。
その結果,ConvexLDAは,高次元の生物学的データや画像データセットなどにおいて,LDA(Lyly linear discriminant analysis)に基づくいくつかの手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-03-17T18:17:49Z) - Approximation and bounding techniques for the Fisher-Rao distances between parametric statistical models [7.070726553564701]
我々はフィッシャー・ラオ距離の数値的ロバストな近似と有界化について考察する。
特に、近似に対する任意の小さな加算誤差を保証するための一般的な方法を得る。
我々は,フィッシャー・ラオ測地線のプロキシとして機能する曲線長をベースとした2つの新しい距離を提案する。
論文 参考訳(メタデータ) (2024-03-15T08:05:16Z) - Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification [72.77513633290056]
本稿では, 学習モデルを用いて評価したヘッセン行列をトレーニングセットで評価した共分散行列の固有解析と, 深層学習モデルで評価したヘッセン行列を組み合わせた新しい手法を提案する。
本手法は複雑なパターンと関係を抽出し,分類性能を向上する。
論文 参考訳(メタデータ) (2024-02-14T16:10:42Z) - Enhancing Person Re-Identification through Tensor Feature Fusion [0.5562294018150907]
本稿では,テンソル特徴表現とマルチ線形部分空間学習に基づく新しい人物認識システム(PRe-ID)を提案する。
提案手法は,事前学習したCNNを高レベル特徴抽出に活用する。
クロスビュー四分法解析(TXQDA)アルゴリズムは,マルチ線形部分空間学習に使用される。
論文 参考訳(メタデータ) (2023-12-16T15:04:07Z) - Approximation Theory, Computing, and Deep Learning on the Wasserstein Space [0.5735035463793009]
有限標本からの無限次元空間における近似関数の挑戦に対処する。
我々の焦点はワッサーシュタイン距離関数であり、これは関連する例である。
機能近似を定義するために,機械学習に基づく3つのアプローチを採用する。
論文 参考訳(メタデータ) (2023-10-30T13:59:47Z) - Nonlinear Feature Aggregation: Two Algorithms driven by Theory [45.3190496371625]
現実世界の機械学習アプリケーションは、膨大な機能によって特徴付けられ、計算やメモリの問題を引き起こす。
一般集約関数を用いて特徴量の非線形変換を集約する次元還元アルゴリズム(NonLinCFA)を提案する。
また、アルゴリズムを合成および実世界のデータセット上でテストし、回帰および分類タスクを実行し、競合性能を示す。
論文 参考訳(メタデータ) (2023-06-19T19:57:33Z) - Interpretable Linear Dimensionality Reduction based on Bias-Variance
Analysis [45.3190496371625]
本稿では,特徴の解釈可能性を維持するための基本次元削減手法を提案する。
このように、全ての特徴を考慮し、次元性を減らし、解釈可能性を保持する。
論文 参考訳(メタデータ) (2023-03-26T14:30:38Z) - Constructing Balance from Imbalance for Long-tailed Image Recognition [50.6210415377178]
多数派(頭)クラスと少数派(尾)クラスの不均衡は、データ駆動のディープニューラルネットワークを著しく歪ませる。
従来の手法では、データ分散、特徴空間、モデル設計の観点からデータ不均衡に対処していた。
ラベル空間を段階的に調整し,ヘッドクラスとテールクラスを分割することで,簡潔なパラダイムを提案する。
提案モデルでは,特徴評価手法も提供し,長期的特徴学習の道を開く。
論文 参考訳(メタデータ) (2022-08-04T10:22:24Z) - Functional Nonlinear Learning [0.0]
低次元特徴空間における多変量関数データを表現する機能非線形学習法(FunNoL)を提案する。
本研究では,FunNoLがデータ間隔によらず,良好な曲線分類と再構成を提供することを示す。
論文 参考訳(メタデータ) (2022-06-22T23:47:45Z) - On Hypothesis Transfer Learning of Functional Linear Models [8.557392136621894]
再生カーネル空間(RKHS)フレームワークを用いて,関数線形回帰(FLR)のための伝達学習(TL)について検討する。
我々は、RKHS距離を用いてタスク間の類似度を測定し、RKHSの特性に関連付けられた情報の転送を行う。
2つのアルゴリズムが提案され、1つは正のソースが分かっているときに転送を行い、もう1つはアグリゲーションを利用してソースに関する事前情報なしでロバストな転送を行う。
論文 参考訳(メタデータ) (2022-06-09T04:50:16Z) - Hyperbolic Vision Transformers: Combining Improvements in Metric
Learning [116.13290702262248]
計量学習のための新しい双曲型モデルを提案する。
本手法のコアとなるのは、双曲空間にマッピングされた出力埋め込みを備えた視覚変換器である。
4つのデータセットに6つの異なる定式化を施したモデルの評価を行った。
論文 参考訳(メタデータ) (2022-03-21T09:48:23Z) - Learning Linearized Assignment Flows for Image Labeling [70.540936204654]
画像ラベリングのための線形化代入フローの最適パラメータを推定するための新しいアルゴリズムを提案する。
この式をKrylov部分空間と低ランク近似を用いて効率的に評価する方法を示す。
論文 参考訳(メタデータ) (2021-08-02T13:38:09Z) - Sparse Universum Quadratic Surface Support Vector Machine Models for
Binary Classification [0.0]
カーネルフリーな2次曲面サポートベクターマシンモデルを設計する。
二次曲面のヘシアンにおける潜在的空間パターンの検出に有用であるL1ノルム正規化版を提案する。
提案モデルの実現可能性と有効性を示すために、人工的および公共のベンチマークデータセットの数値実験を実施します。
論文 参考訳(メタデータ) (2021-04-03T07:40:30Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z) - Robust Similarity and Distance Learning via Decision Forests [8.587164648430251]
距離学習のための新たな決定森林アルゴリズムを提案し,これをSimisity and Metric Random Forests(SMERF)と呼ぶ。
任意の距離を近似し、重要な特徴を識別する能力は、シミュレーションデータセット上で実証的に実証されている。
論文 参考訳(メタデータ) (2020-07-27T20:17:42Z) - Rethink Maximum Mean Discrepancy for Domain Adaptation [77.2560592127872]
本論文は,(1)最大平均距離の最小化は,それぞれソースとクラス内距離の最大化に等しいが,その差を暗黙の重みと共同で最小化し,特徴判別性は低下する,という2つの本質的な事実を理論的に証明する。
いくつかのベンチマークデータセットの実験は、理論的な結果の有効性を証明しただけでなく、我々のアプローチが比較した最先端手法よりも大幅に向上できることを実証した。
論文 参考訳(メタデータ) (2020-07-01T18:25:10Z) - High-Dimensional Quadratic Discriminant Analysis under Spiked Covariance
Model [101.74172837046382]
そこで本研究では,魚の識別比を最大化する2次分類手法を提案する。
数値シミュレーションにより,提案した分類器は,合成データと実データの両方において古典的R-QDAよりも優れるだけでなく,計算量の削減も要求されることがわかった。
論文 参考訳(メタデータ) (2020-06-25T12:00:26Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
射影ロバスト(PR)OTは、2つの測度の間のOTコストを最大化するために、射影可能な$k$次元部分空間を選択する。
私たちの最初の貢献は、PRワッサーシュタイン距離のいくつかの基本的な統計的性質を確立することである。
次に、部分空間を最適化するのではなく平均化することにより、PRW距離の代替として積分PRワッサーシュタイン距離(IPRW)を提案する。
論文 参考訳(メタデータ) (2020-06-22T14:35:33Z) - Saliency-based Weighted Multi-label Linear Discriminant Analysis [101.12909759844946]
複数ラベルの分類課題を解決するために,LDA(Linear Discriminant Analysis)の新たな変種を提案する。
提案手法は,個々の試料の重量を定義する確率モデルに基づく。
サリエンシに基づく重み付きマルチラベル LDA アプローチは,様々なマルチラベル分類問題の性能改善につながることが示されている。
論文 参考訳(メタデータ) (2020-04-08T19:40:53Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
有限幅2層ReLUネットワークの解析のための凸解析手法を開発した。
正規化学習問題に対する最適解が凸集合の極点として特徴づけられることを示す。
高次元では、トレーニング問題は無限に多くの制約を持つ有限次元凸問題としてキャストできることが示される。
論文 参考訳(メタデータ) (2020-02-25T23:05:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。