論文の概要: AL-PINN: Active Learning-Driven Physics-Informed Neural Networks for Efficient Sample Selection in Solving Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2502.03963v1
- Date: Thu, 06 Feb 2025 10:54:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:32:00.363190
- Title: AL-PINN: Active Learning-Driven Physics-Informed Neural Networks for Efficient Sample Selection in Solving Partial Differential Equations
- Title(参考訳): AL-PINN:部分微分方程式の解法における効率的なサンプル選択のための能動的学習駆動型物理インフォームドニューラルネットワーク
- Authors: Keon Vin Park,
- Abstract要約: 偏微分方程式(PDE)の解法として物理情報ニューラルネットワーク(PINN)が誕生した。
サンプル選択を動的に最適化するために、不確実性定量化(UQ)とアクティブラーニング戦略を統合したアクティブラーニング駆動型PINN(AL-PINN)を提案する。
その結果,AL-PINN は従来の PINN と比較して精度が向上し,必要なトレーニングサンプルの数を削減できた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Physics-Informed Neural Networks (PINNs) have emerged as a promising approach for solving Partial Differential Equations (PDEs) by incorporating physical constraints into deep learning models. However, standard PINNs often require a large number of training samples to achieve high accuracy, leading to increased computational costs. To address this issue, we propose Active Learning-Driven PINNs (AL-PINN), which integrates Uncertainty Quantification (UQ) and Active Learning (AL) strategies to optimize sample selection dynamically. AL-PINN utilizes Monte Carlo Dropout to estimate epistemic uncertainty in the model predictions, enabling the adaptive selection of high-uncertainty regions for additional training. This approach significantly enhances learning efficiency by focusing computational resources on the most informative data points. We evaluate AL-PINN on benchmark PDE problems with known analytical solutions and real-world WeatherBench climate data. Our results demonstrate that AL-PINN achieves comparable or superior accuracy compared to traditional PINNs while reducing the number of required training samples. The proposed framework is particularly beneficial for scientific and engineering applications where data collection is expensive or limited, such as climate modeling, medical simulations, and material science. Our findings highlight the potential of active learning in accelerating PINN-based PDE solvers while maintaining high accuracy and computational efficiency.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、深層学習モデルに物理的制約を組み込むことで、部分微分方程式(PDE)を解決するための有望なアプローチとして登場した。
しかし、標準的なPINNは高い精度を達成するために大量のトレーニングサンプルを必要とすることが多く、計算コストが増大する。
この問題に対処するために,不確実性定量化(UQ)とアクティブラーニング(AL)戦略を統合して,サンプル選択を動的に最適化する,アクティブラーニング駆動型PINN(AL-PINN)を提案する。
AL-PINNはモンテカルロ・ドロップアウトを用いて、モデル予測における疫学的な不確実性を推定し、さらなるトレーニングのために高不確かさ領域の適応的選択を可能にする。
このアプローチは、最も情報性の高いデータポイントに計算資源を集中させることにより、学習効率を著しく向上させる。
AL-PINNは、既知の解析解と実際の気象ベンチ気候データを用いて、PDE問題のベンチマーク上で評価する。
その結果,AL-PINN は従来の PINN と比較して精度が向上し,必要なトレーニングサンプルの数を削減できた。
このフレームワークは、気候モデリング、医療シミュレーション、材料科学など、データ収集が高価または制限された科学・工学的な応用に特に有用である。
本研究は, PINNベースのPDEソルバを高速化する上で, 高い精度と計算効率を維持しながら, 能動的学習の可能性を明らかにするものである。
関連論文リスト
- Towards a Foundation Model for Physics-Informed Neural Networks: Multi-PDE Learning with Active Sampling [0.0]
物理インフォームドニューラルネットワーク(PINN)は、物理法則をニューラルネットワークトレーニングに埋め込むことで偏微分方程式(PDE)を解くための強力なフレームワークとして登場した。
本研究では,統一アーキテクチャ内で複数のPDEを解決可能な基礎PINNモデルの可能性について検討する。
論文 参考訳(メタデータ) (2025-02-11T10:12:28Z) - Learnable Activation Functions in Physics-Informed Neural Networks for Solving Partial Differential Equations [0.0]
物理情報ネットワーク(PINN)における学習可能なアクティベーション関数を用いた部分微分方程式(PDE)の解法について検討する。
従来のMLP(Multilayer Perceptrons)とKAN(Kolmogorov-Arnold Neural Networks)に対する固定および学習可能なアクティベーションの比較を行った。
この発見は、PDEソルバのトレーニング効率、収束速度、テスト精度のバランスをとるニューラルネットワークアーキテクチャの設計に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-11-22T18:25:13Z) - Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed Neural
Networks [24.14254861023394]
本研究では,物理インフォームドニューラルネットワーク (PINN) がそのような解法の一つとして考えられる可能性を秘めた経路を提案する。
PINNは、ディープラーニングと科学計算の適切な統合を開拓してきたが、ニューラルネットワークの反復的な時間的トレーニングを必要としている。
本稿では,数百のモデルパラメータと関連するハイパーネットワークに基づくメタ学習アルゴリズムを含む軽量な低ランクPINNを提案する。
論文 参考訳(メタデータ) (2023-10-14T08:13:43Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - PSO-PINN: Physics-Informed Neural Networks Trained with Particle Swarm
Optimization [0.0]
そこで本研究では,ハイブリッド粒子群最適化と勾配降下法を用いてPINNを訓練する手法を提案する。
PSO-PINNアルゴリズムは、標準勾配降下法で訓練されたPINNの望ましくない挙動を緩和する。
実験の結果, PSO-PINNはアダム勾配降下法でトレーニングしたベースラインPINNよりも一貫して優れていた。
論文 参考訳(メタデータ) (2022-02-04T02:21:31Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - A deep learning framework for solution and discovery in solid mechanics [1.4699455652461721]
本稿では,物理情報ニューラルネットワーク(PINN)と呼ばれるディープラーニングのクラスを,固体力学の学習と発見に応用する。
本稿では, 運動量バランスと弾性の関係をPINNに組み込む方法について解説し, 線形弾性への応用について詳細に検討する。
論文 参考訳(メタデータ) (2020-02-14T08:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。