論文の概要: Towards a Foundation Model for Physics-Informed Neural Networks: Multi-PDE Learning with Active Sampling
- arxiv url: http://arxiv.org/abs/2502.07425v1
- Date: Tue, 11 Feb 2025 10:12:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:06:58.436125
- Title: Towards a Foundation Model for Physics-Informed Neural Networks: Multi-PDE Learning with Active Sampling
- Title(参考訳): 物理インフォームドニューラルネットワークの基礎モデルに向けて:アクティブサンプリングを用いた多PDE学習
- Authors: Keon Vin Park,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、物理法則をニューラルネットワークトレーニングに埋め込むことで偏微分方程式(PDE)を解くための強力なフレームワークとして登場した。
本研究では,統一アーキテクチャ内で複数のPDEを解決可能な基礎PINNモデルの可能性について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Physics-Informed Neural Networks (PINNs) have emerged as a powerful framework for solving partial differential equations (PDEs) by embedding physical laws into neural network training. However, traditional PINN models are typically designed for single PDEs, limiting their generalizability across different physical systems. In this work, we explore the potential of a foundation PINN model capable of solving multiple PDEs within a unified architecture. We investigate the efficacy of a single PINN framework trained on four distinct PDEs-the Simple Harmonic Oscillator (SHO), the 1D Heat Equation, the 1D Wave Equation, and the 2D Laplace Equation, demonstrating its ability to learn diverse physical dynamics. To enhance sample efficiency, we incorporate Active Learning (AL) using Monte Carlo (MC) Dropout-based uncertainty estimation, selecting the most informative training samples iteratively. We evaluate different active learning strategies, comparing models trained on 10%, 20%, 30%, 40%, and 50% of the full dataset, and analyze their impact on solution accuracy. Our results indicate that targeted uncertainty sampling significantly improves performance with fewer training samples, leading to efficient learning across multiple PDEs. This work highlights the feasibility of a generalizable PINN-based foundation model, capable of adapting to different physics-based problems without redesigning network architectures. Our findings suggest that multi-PDE PINNs with active learning can serve as an effective approach for reducing computational costs while maintaining high accuracy in physics-based deep learning applications.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、物理法則をニューラルネットワークトレーニングに埋め込むことで偏微分方程式(PDE)を解くための強力なフレームワークとして登場した。
しかし、従来のPINNモデルは一般に単一のPDE用に設計されており、様々な物理系にまたがる一般化性を制限している。
本研究では,統一アーキテクチャ内で複数のPDEを解決可能な基礎PINNモデルの可能性について検討する。
本研究では,4つの異なるPDE(SHO),1次元熱方程式,1次元波動方程式,2次元ラプラス方程式)をトレーニングした1つのPINNフレームワークの有効性について検討し,物理力学を学習する能力を示した。
サンプル効率を向上させるために,モンテカルロ(MC)ドロップアウトに基づく不確実性推定を用いてアクティブラーニング(AL)を組み込み,最も情報性の高いトレーニングサンプルを反復的に選択する。
我々は、さまざまなアクティブラーニング戦略を評価し、10%、20%、30%、40%、50%のデータセットでトレーニングされたモデルを比較し、ソリューションの正確性への影響を分析した。
その結果,対象とする不確実性サンプリングはトレーニングサンプルが少ないほど性能が著しく向上し,複数のPDEにまたがる学習効率が向上することが示唆された。
この研究は、ネットワークアーキテクチャを再設計することなく、異なる物理ベースの問題に適応できる一般化可能なPINNベースの基盤モデルの実現可能性を強調している。
この結果から,能動学習を用いたマルチPDE PINNは,物理に基づく深層学習アプリケーションにおいて高い精度を維持しつつ,計算コストを削減する効果的な手法である可能性が示唆された。
関連論文リスト
- AL-PINN: Active Learning-Driven Physics-Informed Neural Networks for Efficient Sample Selection in Solving Partial Differential Equations [0.0]
偏微分方程式(PDE)の解法として物理情報ニューラルネットワーク(PINN)が誕生した。
サンプル選択を動的に最適化するために、不確実性定量化(UQ)とアクティブラーニング戦略を統合したアクティブラーニング駆動型PINN(AL-PINN)を提案する。
その結果,AL-PINN は従来の PINN と比較して精度が向上し,必要なトレーニングサンプルの数を削減できた。
論文 参考訳(メタデータ) (2025-02-06T10:54:28Z) - Learnable Activation Functions in Physics-Informed Neural Networks for Solving Partial Differential Equations [0.0]
物理情報ネットワーク(PINN)における学習可能なアクティベーション関数を用いた部分微分方程式(PDE)の解法について検討する。
従来のMLP(Multilayer Perceptrons)とKAN(Kolmogorov-Arnold Neural Networks)に対する固定および学習可能なアクティベーションの比較を行った。
この発見は、PDEソルバのトレーニング効率、収束速度、テスト精度のバランスをとるニューラルネットワークアーキテクチャの設計に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-11-22T18:25:13Z) - Adapting Physics-Informed Neural Networks to Improve ODE Optimization in Mosquito Population Dynamics [0.019972837513980313]
本稿では,ODE システムの前方および逆問題に対していくつかの改良を加えた PINN フレームワークを提案する。
この枠組みは、蚊の常微分方程式によって生じる勾配不均衡と硬い問題に取り組む。
予備的な結果は、物理インフォームド機械学習が生態システムの研究を前進させる大きな可能性を秘めていることを示している。
論文 参考訳(メタデータ) (2024-06-07T17:40:38Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Neural-PDE: A RNN based neural network for solving time dependent PDEs [6.560798708375526]
偏微分方程式 (Partial differential equation, PDE) は、科学や工学における多くの問題を研究する上で重要な役割を果たしている。
本稿では,時間依存型PDEシステムのルールを自動的に学習する,Neural-PDEと呼ばれるシーケンス深層学習フレームワークを提案する。
我々の実験では、ニューラルPDEは20時間以内のトレーニングで効率よく力学を抽出し、正確な予測を行うことができる。
論文 参考訳(メタデータ) (2020-09-08T15:46:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。