論文の概要: Curriculum Learning-Driven PIELMs for Fluid Flow Simulations
- arxiv url: http://arxiv.org/abs/2503.06347v1
- Date: Sat, 08 Mar 2025 22:04:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:46:52.141529
- Title: Curriculum Learning-Driven PIELMs for Fluid Flow Simulations
- Title(参考訳): 流体流動シミュレーションのためのカリキュラム学習型PIELM
- Authors: Vikas Dwivedi, Bruno Sixou, Monica Sigovan,
- Abstract要約: 本稿では,流体流に関する定常および非定常な非線形偏微分方程式(PDE)を解くために,物理インフォームド・エクストリーム・ラーニング・マシン(PIELM)を用いた2つの新しいアルゴリズムを提案する。
単層PIELMは、線形および準線形PDEの速度と精度において、ディープ物理インフォームドニューラルネットワーク(PINN)より優れているが、非線形問題への拡張は依然として困難である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents two novel, physics-informed extreme learning machine (PIELM)-based algorithms for solving steady and unsteady nonlinear partial differential equations (PDEs) related to fluid flow. Although single-hidden-layer PIELMs outperform deep physics-informed neural networks (PINNs) in speed and accuracy for linear and quasilinear PDEs, their extension to nonlinear problems remains challenging. To address this, we introduce a curriculum learning strategy that reformulates nonlinear PDEs as a sequence of increasingly complex quasilinear PDEs. Additionally, our approach enables a physically interpretable initialization of network parameters by leveraging Radial Basis Functions (RBFs). The performance of the proposed algorithms is validated on two benchmark incompressible flow problems: the viscous Burgers equation and lid-driven cavity flow. To the best of our knowledge, this is the first work to extend PIELM to solving Burgers' shock solution as well as lid-driven cavity flow up to a Reynolds number of 100. As a practical application, we employ PIELM to predict blood flow in a stenotic vessel. The results confirm that PIELM efficiently handles nonlinear PDEs, positioning it as a promising alternative to PINNs for both linear and nonlinear PDEs.
- Abstract(参考訳): 本稿では,流体流に関する定常および非定常な非線形偏微分方程式(PDE)を解くために,物理インフォームド・エクストリーム・ラーニング・マシン(PIELM)を用いた2つの新しいアルゴリズムを提案する。
単層PIELMは、線形および準線形PDEの速度と精度において、ディープ物理インフォームドニューラルネットワーク(PINN)より優れているが、非線形問題への拡張は依然として困難である。
そこで我々は, 非線形PDEを, より複雑な準線形PDEの列として再構成するカリキュラム学習戦略を導入する。
さらに,この手法は,放射基底関数(RBF)を利用して,物理的に解釈可能なネットワークパラメータの初期化を可能にする。
提案アルゴリズムの性能は,粘性バーガース方程式と蓋駆動キャビティフローの2つのベンチマーク非圧縮性流れ問題に対して検証した。
私たちの知る限りでは、これはPIELMをバーガースの衝撃解に拡張する最初の試みであり、蓋駆動キャビティはレイノルズ数100まで流れている。
実用的な応用として,狭窄血管内の血流を予測するためにPIELMを用いた。
その結果、PIELMは非線形PDEを効率的に処理し、線形PDEと非線形PDEの両方でPINNに代わる有望な代替品として位置づけた。
関連論文リスト
- Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - An efficient hp-Variational PINNs framework for incompressible Navier-Stokes equations [0.0]
物理インフォームドニューラルネットワーク(PINN)は、PDEの残余を損失関数に組み込むことで、偏微分方程式(PDE)を解くことができる。
hp-VPINNは従来のPINNよりも有望だが、複雑なジオメトリを扱えるフレームワークがない。
FastVPINNは、テンソルベースの損失計算を導入し、トレーニング効率を大幅に改善することで、これらの課題に対処するために導入された。
論文 参考訳(メタデータ) (2024-09-06T09:17:41Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Investigating and Mitigating Failure Modes in Physics-informed Neural
Networks (PINNs) [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)を用いた偏微分方程式(PDE)の解法について検討する。
PINNは客観的関数の正規化用語として物理を用いるが、この手法はデータの欠如や解の事前知識の欠如において実用的ではない。
以上の結果から,高次PDEは逆伝播勾配を汚染し,収束を阻害することが明らかとなった。
論文 参考訳(メタデータ) (2022-09-20T20:46:07Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed
Hermite-Spline CNNs [4.560331122656578]
部分微分方程式 (Partial Differential Equations, PDE) は、解くのがとても難しい。
本稿では、最近登場した2つの機械学習ベースのアプローチの利点を組み合わせた新しい手法に基づいて、PDEのソリューションにアプローチすることを提案する。
論文 参考訳(メタデータ) (2021-09-15T08:10:23Z) - PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
Spatiotemporal PDEs [8.220908558735884]
偏微分方程式 (Partial differential equation, PDE) は、幅広い分野の問題をモデル化し、シミュレーションする上で基礎的な役割を果たす。
近年のディープラーニングの進歩は、データ駆動逆解析の基盤としてPDEを解くために物理学インフォームドニューラルネットワーク(NN)の大きな可能性を示している。
本稿では,PDEをラベル付きデータなしで解くための物理インフォームド・畳み込み学習アーキテクチャ(PhyCRNetとPhCRyNet-s)を提案する。
論文 参考訳(メタデータ) (2021-06-26T22:22:19Z) - A nonlocal physics-informed deep learning framework using the
peridynamic differential operator [0.0]
本研究では,長距離相互作用を組み込んだ数値計算法であるPeridynamic Differential Operator (PDDO) を用いた非局所PINN手法を開発した。
PDDO関数はニューラルネットワークアーキテクチャに容易に組み込むことができるため、非局所性は現代のディープラーニングアルゴリズムの性能を低下させることはない。
本稿では,非局所PINNの解法精度とパラメータ推定の両方において,局所PINNに対して優れた振る舞いを示す。
論文 参考訳(メタデータ) (2020-05-31T06:26:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。