論文の概要: An efficient hp-Variational PINNs framework for incompressible Navier-Stokes equations
- arxiv url: http://arxiv.org/abs/2409.04143v1
- Date: Fri, 6 Sep 2024 09:17:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 16:16:11.505114
- Title: An efficient hp-Variational PINNs framework for incompressible Navier-Stokes equations
- Title(参考訳): 非圧縮性ナビエ・ストークス方程式に対する効率的なhp-変数PINNフレームワーク
- Authors: Thivin Anandh, Divij Ghose, Ankit Tyagi, Abhineet Gupta, Suranjan Sarkar, Sashikumaar Ganesan,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、PDEの残余を損失関数に組み込むことで、偏微分方程式(PDE)を解くことができる。
hp-VPINNは従来のPINNよりも有望だが、複雑なジオメトリを扱えるフレームワークがない。
FastVPINNは、テンソルベースの損失計算を導入し、トレーニング効率を大幅に改善することで、これらの課題に対処するために導入された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Physics-informed neural networks (PINNs) are able to solve partial differential equations (PDEs) by incorporating the residuals of the PDEs into their loss functions. Variational Physics-Informed Neural Networks (VPINNs) and hp-VPINNs use the variational form of the PDE residuals in their loss function. Although hp-VPINNs have shown promise over traditional PINNs, they suffer from higher training times and lack a framework capable of handling complex geometries, which limits their application to more complex PDEs. As such, hp-VPINNs have not been applied in solving the Navier-Stokes equations, amongst other problems in CFD, thus far. FastVPINNs was introduced to address these challenges by incorporating tensor-based loss computations, significantly improving the training efficiency. Moreover, by using the bilinear transformation, the FastVPINNs framework was able to solve PDEs on complex geometries. In the present work, we extend the FastVPINNs framework to vector-valued problems, with a particular focus on solving the incompressible Navier-Stokes equations for two-dimensional forward and inverse problems, including problems such as the lid-driven cavity flow, the Kovasznay flow, and flow past a backward-facing step for Reynolds numbers up to 200. Our results demonstrate a 2x improvement in training time while maintaining the same order of accuracy compared to PINNs algorithms documented in the literature. We further showcase the framework's efficiency in solving inverse problems for the incompressible Navier-Stokes equations by accurately identifying the Reynolds number of the underlying flow. Additionally, the framework's ability to handle complex geometries highlights its potential for broader applications in computational fluid dynamics. This implementation opens new avenues for research on hp-VPINNs, potentially extending their applicability to more complex problems.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、PDEの残余を損失関数に組み込むことで、偏微分方程式(PDE)を解くことができる。
変分物理学インフォームドニューラルネットワーク(VPINN)とhp-VPINNは、損失関数のPDE残基の変分形式を用いる。
hp-VPINNは従来のPINNよりも有望であるが、トレーニング時間が長く、複雑なジオメトリを扱えるフレームワークが欠けているため、より複雑なPDEに制限されている。
したがって、hp-VPINNはナヴィエ・ストークス方程式の解法には適用されていない。
FastVPINNは、テンソルベースの損失計算を導入し、トレーニング効率を大幅に改善することで、これらの課題に対処するために導入された。
さらに、双線型変換を用いることで、FastVPINNsフレームワークは複素幾何学上のPDEを解くことができた。
本研究では,FastVPINNsフレームワークをベクトル値問題に拡張し,非圧縮性なナビエ・ストークス方程式を2次元前方および逆問題に対して解くことに着目した。
その結果,文献に記録されているPINNのアルゴリズムと同等の精度を維持しつつ,トレーニング時間を2倍改善したことを示す。
さらに,非圧縮性ナヴィエ・ストークス方程式の逆問題の解法において,レイノルズ数の根底流れを正確に同定することで,フレームワークの効率性を示す。
さらに、複雑なジオメトリを扱うフレームワークの能力は、計算流体力学の幅広い応用の可能性を強調している。
この実装は、hp-VPINNの研究のための新しい道を開き、より複雑な問題への適用性を広げる可能性がある。
関連論文リスト
- FastVPINNs: Tensor-Driven Acceleration of VPINNs for Complex Geometries [4.5594104437122684]
変分物理学情報ニューラルネットワーク(VPINN)は偏微分方程式の解法として変分損失関数を用いる。
FastVPINNは、従来のhp-VPINNと比較して、エポックあたりの平均トレーニング時間を100倍に短縮する。
論文 参考訳(メタデータ) (2024-04-18T10:21:28Z) - Operator Learning Enhanced Physics-informed Neural Networks for Solving
Partial Differential Equations Characterized by Sharp Solutions [10.999971808508437]
そこで我々は,OL-PINN(Operator Learning Enhanced Physics-informed Neural Networks)と呼ばれる新しいフレームワークを提案する。
提案手法は, 強い一般化能力を実現するために, 少数の残差点しか必要としない。
精度を大幅に向上すると同時に、堅牢なトレーニングプロセスも保証する。
論文 参考訳(メタデータ) (2023-10-30T14:47:55Z) - RANS-PINN based Simulation Surrogates for Predicting Turbulent Flows [3.1861308132183384]
我々は,高レイノルズ数乱流状態における流れ場を予測するために,改良されたPINNフレームワークであるRANS-PINNを導入する。
乱流によってもたらされるさらなる複雑さを考慮するため、RANS-PINNはレイノルズ平均ナヴィエ・ストークス(RANS)の定式化に基づく2方程式渦粘性モデルを採用している。
論文 参考訳(メタデータ) (2023-06-09T16:55:49Z) - A physics-informed neural network framework for modeling obstacle-related equations [3.687313790402688]
物理インフォームドニューラルネットワーク(PINN)は、スパースデータとノイズデータに基づいて偏微分方程式を解く魅力的なツールである。
ここでは、PINNを拡張して障害物関連PDEを解くことで、計算上の大きな課題を提示します。
提案したPINNの性能は、正規および不規則な障害物を受ける線形および非線形PDEの複数のシナリオで実証される。
論文 参考訳(メタデータ) (2023-04-07T09:22:28Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Reduced-PINN: An Integration-Based Physics-Informed Neural Networks for
Stiff ODEs [0.0]
物理インフォームドニューラルネットワーク(PINN)は、最近、前方および逆問題の両方を解決する能力により、多くの注目を集めている。
そこで我々は, PINN の高次積分法を用いて, 硬質化学動力学を解ける新しい PINN アーキテクチャ, Reduced-PINN を提案する。
論文 参考訳(メタデータ) (2022-08-23T09:20:42Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
科学と工学にまたがる多くの応用分野において、偏微分方程式(PDE)によって定義される制約で逆問題を解決することに興味がある。
ここでは、これらのPDE制約された逆問題を解決するために、GNNを探索する。
GNNを用いて計算速度を最大90倍に向上させる。
論文 参考訳(メタデータ) (2022-06-01T18:48:01Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。