論文の概要: $PINN - a Domain Decomposition Method for Bayesian Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2504.19013v3
- Date: Thu, 01 May 2025 09:26:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.088918
- Title: $PINN - a Domain Decomposition Method for Bayesian Physics-Informed Neural Networks
- Title(参考訳): $PINN - ベイズ物理学インフォームドニューラルネットワークの領域分解法
- Authors: Júlia Vicens Figueres, Juliette Vanderhaeghen, Federica Bragone, Kateryna Morozovska, Khemraj Shukla,
- Abstract要約: $PINNは、ベイズフレームワークを用いたPDEのグローバル不確実性を計算する新しい方法である。
$PINNはトレーニングデータに非相関ランダムノイズを最大15%追加し、異なるドメインサイズをテストすることで検証される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-Informed Neural Networks (PINNs) are a novel computational approach for solving partial differential equations (PDEs) with noisy and sparse initial and boundary data. Although, efficient quantification of epistemic and aleatoric uncertainties in big multi-scale problems remains challenging. We propose \$PINN a novel method of computing global uncertainty in PDEs using a Bayesian framework, by combining local Bayesian Physics-Informed Neural Networks (BPINN) with domain decomposition. The solution continuity across subdomains is obtained by imposing the flux continuity across the interface of neighboring subdomains. To demonstrate the effectiveness of \$PINN, we conduct a series of computational experiments on PDEs in 1D and 2D spatial domains. Although we have adopted conservative PINNs (cPINNs), the method can be seamlessly extended to other domain decomposition techniques. The results infer that the proposed method recovers the global uncertainty by computing the local uncertainty exactly more efficiently as the uncertainty in each subdomain can be computed concurrently. The robustness of \$PINN is verified by adding uncorrelated random noise to the training data up to 15% and testing for different domain sizes.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を雑音とスパースな初期データと境界データで解くための新しい計算手法である。
しかし、大規模な多スケール問題における疫学およびアレタリック不確実性の効率的な定量化は依然として困難である。
本稿では,BPINN(Bayesian Physics-Informed Neural Networks)とドメイン分解を組み合わせた,ベイジアンフレームワークを用いたPDEのグローバル不確実性計算手法として,$PINNを提案する。
サブドメイン間の解連続性は、隣接するサブドメインの界面にフラックス連続性を与えることによって得られる。
1次元空間領域と2次元空間領域におけるPDEに対する一連の計算実験を行った。
我々は、保守的なPINN(cPINN)を採用したが、他のドメイン分解技術にシームレスに拡張できる。
提案手法は,各サブドメイン内の不確かさを並列に計算できるため,局所不確かさをより効率的に計算することで,グローバル不確かさを回復する。
トレーニングデータに非相関ランダムノイズを最大15%追加し、異なるドメインサイズのテストを行うことで、$PINNのロバスト性を検証する。
関連論文リスト
- PACMANN: Point Adaptive Collocation Method for Artificial Neural Networks [44.99833362998488]
PINNは、一組のコロケーションポイントに対して決定されたPDE残差を含む損失関数を最小化する。
これまでの研究では、これらのコロケーションポイントの数と分布がPINNソリューションの精度に大きな影響を与えることが示されている。
ニューラルネットワーク(PACMANN)のための点適応コロケーション法を提案する。
論文 参考訳(メタデータ) (2024-11-29T11:31:11Z) - SetPINNs: Set-based Physics-informed Neural Networks [31.193471532024407]
ローカル依存関係を効果的にキャプチャするフレームワークであるSetPINNを紹介する。
ドメインをセットに分割して、物理法則を同時に適用しながら、ローカル依存関係をモデル化します。
論文 参考訳(メタデータ) (2024-09-30T11:41:58Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Learning Only On Boundaries: a Physics-Informed Neural operator for
Solving Parametric Partial Differential Equations in Complex Geometries [10.250994619846416]
ラベル付きデータなしでパラメータ化境界値問題を解決する物理インフォームド・ニューラル演算子法を提案する。
数値実験により,パラメータ化複素測地と非有界問題の有効性が示された。
論文 参考訳(メタデータ) (2023-08-24T17:29:57Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Deep NURBS -- Admissible Physics-informed Neural Networks [0.0]
偏微分方程式(PDE)の高精度かつ安価な解を可能にする物理インフォームドニューラルネットワーク(PINN)の新しい数値スキームを提案する。
提案手法は、物理領域とディリクレ境界条件を定義するのに必要な許容的なNURBSパラメトリゼーションとPINNソルバを組み合わせたものである。
論文 参考訳(メタデータ) (2022-10-25T10:35:45Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - A Bit More Bayesian: Domain-Invariant Learning with Uncertainty [111.22588110362705]
ドメインの一般化は、ドメインシフトと、ターゲットドメインデータのアクセス不能に起因する不確実性のために困難である。
本稿では,変分ベイズ推定に基づく確率的枠組みを用いて,両課題に対処する。
2層ベイズ型ニューラルネットワークで共同で確立されたドメイン不変表現と分類器を導出する。
論文 参考訳(メタデータ) (2021-05-09T21:33:27Z) - Train Once and Use Forever: Solving Boundary Value Problems in Unseen
Domains with Pre-trained Deep Learning Models [0.20999222360659606]
本稿では,ニューラルネットワークを用いて境界値問題(BVP)を解くための伝達可能なフレームワークを提案する。
まず,任意の境界条件にまたがるbvpの解を推論できるニューラルネットワークであるgfnet(emphgenomic flow network)を提案する。
そこで我々は,GFNetの推論を組み立てたりステッチしたりする新しい反復アルゴリズムである emphmosaic flow (MF) 予測器を提案する。
論文 参考訳(メタデータ) (2021-04-22T05:20:27Z) - Bayesian neural networks for weak solution of PDEs with uncertainty
quantification [3.4773470589069473]
ラベルなしでPDEを解くために、新しい物理制約ニューラルネットワーク(NN)アプローチが提案されている。
我々は,PDEの離散化残差に基づくNNの損失関数を,効率的で畳み込み演算子に基づくベクトル化実装により記述する。
本研究では, 定常拡散, 線形弾性, 非線形弾性に応用し, 提案フレームワークの性能と性能を示す。
論文 参考訳(メタデータ) (2021-01-13T04:57:51Z) - A nonlocal physics-informed deep learning framework using the
peridynamic differential operator [0.0]
本研究では,長距離相互作用を組み込んだ数値計算法であるPeridynamic Differential Operator (PDDO) を用いた非局所PINN手法を開発した。
PDDO関数はニューラルネットワークアーキテクチャに容易に組み込むことができるため、非局所性は現代のディープラーニングアルゴリズムの性能を低下させることはない。
本稿では,非局所PINNの解法精度とパラメータ推定の両方において,局所PINNに対して優れた振る舞いを示す。
論文 参考訳(メタデータ) (2020-05-31T06:26:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。