論文の概要: IIKL: Isometric Immersion Kernel Learning with Riemannian Manifold for Geometric Preservation
- arxiv url: http://arxiv.org/abs/2505.06288v1
- Date: Wed, 07 May 2025 12:08:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:48.747206
- Title: IIKL: Isometric Immersion Kernel Learning with Riemannian Manifold for Geometric Preservation
- Title(参考訳): IIKL: 幾何保存のためのリーマン多様体を用いた等尺入射カーネル学習
- Authors: Zihao Chen, Wenyong Wang, Jiachen Yang, Yu Xiang,
- Abstract要約: これまでの研究は、非ユークリッドデータを表現学習中にユークリッド空間にマッピングしていた。
本稿では,Isometric Immersion Kernel Learning (IIKL)法を提案する。
本手法は,最先端手法と比較して内積不変損失を90%以上削減できることを示した。
- 参考スコア(独自算出の注目度): 15.82760919569542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geometric representation learning in preserving the intrinsic geometric and topological properties for discrete non-Euclidean data is crucial in scientific applications. Previous research generally mapped non-Euclidean discrete data into Euclidean space during representation learning, which may lead to the loss of some critical geometric information. In this paper, we propose a novel Isometric Immersion Kernel Learning (IIKL) method to build Riemannian manifold and isometrically induce Riemannian metric from discrete non-Euclidean data. We prove that Isometric immersion is equivalent to the kernel function in the tangent bundle on the manifold, which explicitly guarantees the invariance of the inner product between vectors in the arbitrary tangent space throughout the learning process, thus maintaining the geometric structure of the original data. Moreover, a novel parameterized learning model based on IIKL is introduced, and an alternating training method for this model is derived using Maximum Likelihood Estimation (MLE), ensuring efficient convergence. Experimental results proved that using the learned Riemannian manifold and its metric, our model preserved the intrinsic geometric representation of data in both 3D and high-dimensional datasets successfully, and significantly improved the accuracy of downstream tasks, such as data reconstruction and classification. It is showed that our method could reduce the inner product invariant loss by more than 90% compared to state-of-the-art (SOTA) methods, also achieved an average 40% improvement in downstream reconstruction accuracy and a 90% reduction in error for geometric metrics involving isometric and conformal.
- Abstract(参考訳): 離散的非ユークリッドデータに対する固有幾何学的および位相的性質の保存における幾何学的表現学習は、科学的応用において重要である。
これまでの研究は、非ユークリッド離散データを表現学習中にユークリッド空間にマッピングしていた。
本稿では、リーマン多様体を構築し、離散非ユークリッドデータからリーマン計量を等尺的に誘導する新しい等尺Immersion Kernel Learning (IIKL)法を提案する。
等尺入射は多様体上の接束の核関数と等価であり、学習過程を通して任意の接空間におけるベクトル間の内積の不変性を明確に保証し、元のデータの幾何学的構造を維持する。
さらに、IIKLに基づく新しいパラメータ化学習モデルを導入し、このモデルの交互学習法を、MLE(Maximum Likelihood Estimation)を用いて導出し、効率的な収束を保証する。
実験の結果,学習したリーマン多様体とその計量を用いて,3次元および高次元のデータセットにおけるデータ固有の幾何学的表現をうまく保存し,データ再構成や分類などの下流タスクの精度を著しく向上した。
提案手法は, 従来のSOTA法と比較して内積不変量損失を90%以上削減し, 下流部の再現精度を平均40%向上し, 等尺および等角性を含む幾何測定値の誤差を90%低減できることを示した。
関連論文リスト
- Finsler Multi-Dimensional Scaling: Manifold Learning for Asymmetric Dimensionality Reduction and Embedding [41.601022263772535]
次元化の削減は、データ分析や可視化における中心的な応用とともに、重要なパターンを保ちながら、特徴的次元を減らし、複雑なデータを単純化することを目的としている。
基礎となるデータ構造を維持するため、多次元スケーリング(MDS)法は距離などの対等な相似性を保存することに重点を置いている。
論文 参考訳(メタデータ) (2025-03-23T10:03:22Z) - Riemann$^2$: Learning Riemannian Submanifolds from Riemannian Data [12.424539896723603]
潜在変数モデルは、高次元データから低次元多様体を学習するための強力なツールである。
本稿では,ロボットの動作合成や脳コネクトームの解析など,さまざまな領域における複雑なタスクの処理を可能にする。
論文 参考訳(メタデータ) (2025-03-07T16:08:53Z) - Score-based pullback Riemannian geometry [10.649159213723106]
本稿では,データ駆動型リーマン幾何学のフレームワークを提案する。
データサポートを通して高品質な測地学を作成し、データ多様体の固有次元を確実に推定する。
我々のフレームワークは、訓練中に等方性正規化を採用することで、自然に異方性正規化フローで使用することができる。
論文 参考訳(メタデータ) (2024-10-02T18:52:12Z) - Isometric Immersion Learning with Riemannian Geometry [4.987314374901577]
等尺性の理論的な保証を提供する多様体学習方法はまだ存在しない。
ナッシュの等尺定理に触発され、等尺浸漬学習と呼ばれる新しい概念を導入する。
計量学習と多様体学習を同時に行う教師なしニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2024-09-23T07:17:06Z) - (Deep) Generative Geodesics [57.635187092922976]
2つのデータポイント間の類似性を評価するために,新しい測定基準を導入する。
我々の計量は、生成距離と生成測地学の概念的定義に繋がる。
彼らの近似は、穏やかな条件下で真の値に収束することが証明されている。
論文 参考訳(メタデータ) (2024-07-15T21:14:02Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
熱測地線埋め込みと呼ばれるより一般的な熱カーネルベースの多様体埋め込み法を提案する。
その結果,本手法は,地中真理多様体距離の保存において,既存の技術よりも優れていることがわかった。
また,連続体とクラスタ構造を併用した単一セルRNAシークエンシングデータセットに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-30T13:58:50Z) - Exploring Data Geometry for Continual Learning [64.4358878435983]
非定常データストリームのデータ幾何を探索することにより,新しい視点から連続学習を研究する。
提案手法は,新しいデータによって引き起こされる幾何構造に対応するために,基底空間の幾何学を動的に拡張する。
実験により,本手法はユークリッド空間で設計したベースライン法よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-04-08T06:35:25Z) - Improving Metric Dimensionality Reduction with Distributed Topology [68.8204255655161]
DIPOLEは、局所的、計量的項と大域的、位相的項の両方で損失関数を最小化し、初期埋め込みを補正する次元推論後処理ステップである。
DIPOLEは、UMAP、t-SNE、Isomapといった一般的な手法よりも多くの一般的なデータセットで優れています。
論文 参考訳(メタデータ) (2021-06-14T17:19:44Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
ユークリッド空間における測度保存拡散の完全なレシピは、最近、いくつかのMCMCアルゴリズムを単一のフレームワークに統合した。
我々は、この構成を任意の多様体に改善し一般化する幾何学理論を開発する。
論文 参考訳(メタデータ) (2021-05-06T17:36:55Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
データに固有の非線形幾何学構造をモデル化する原則的な方法が提供される。
しかし、これらの演算は通常計算的に要求される。
特に、正規法則上の積分を数値計算するためにベイズ二次(bq)に焦点を当てる。
先行知識と活発な探索手法を両立させることで,BQは必要な評価回数を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2021-02-12T17:38:04Z) - Probabilistic Learning Vector Quantization on Manifold of Symmetric
Positive Definite Matrices [3.727361969017079]
本研究では,確率論的学習ベクトル量子化の枠組みにおける多様体値データの新しい分類法を開発した。
本稿では,対称正定値行列の多様体上に存在するデータ点に対する確率論的学習ベクトル量子化アルゴリズムを一般化する。
合成データ,画像データ,運動画像脳波データに関する実証的研究は,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2021-02-01T06:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。