論文の概要: Course Project Report: Comparing MCMC and Variational Inference for Bayesian Probabilistic Matrix Factorization on the MovieLens Dataset
- arxiv url: http://arxiv.org/abs/2506.09928v2
- Date: Thu, 12 Jun 2025 18:57:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 11:26:08.987405
- Title: Course Project Report: Comparing MCMC and Variational Inference for Bayesian Probabilistic Matrix Factorization on the MovieLens Dataset
- Title(参考訳): コース計画報告:MovieLensデータセットのベイズ確率行列分解におけるMCMCと変分推定の比較
- Authors: Ruixuan Xu, Xiangxiang Weng,
- Abstract要約: 行列分解はレコメンデーションシステムで広く使われている技法である。
我々は2つのベイズ推定法を用いて後部を近似する。
MovieLensのデータセットでそれらのパフォーマンスを比較します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This is a course project report with complete methodology, experiments, references and mathematical derivations. Matrix factorization [1] is a widely used technique in recommendation systems. Probabilistic Matrix Factorization (PMF) [2] extends traditional matrix factorization by incorporating probability distributions over latent factors, allowing for uncertainty quantification. However, computing the posterior distribution is intractable due to the high-dimensional integral. To address this, we employ two Bayesian inference methods: Markov Chain Monte Carlo (MCMC) [3, 4] and Variational Inference (VI) [5, 6] to approximate the posterior. We evaluate their performance on MovieLens dataset [7] and compare their convergence speed, predictive accuracy, and computational efficiency. Experimental results demonstrate that VI offers faster convergence, while MCMC provides more accurate posterior estimates.
- Abstract(参考訳): これは完全な方法論、実験、参照、数学的導出を備えたコースプロジェクトレポートである。
行列分解 [1] はレコメンデーションシステムで広く使われている技法である。
確率行列因子化(PMF)[2]は、潜在因子上の確率分布を組み込むことで従来の行列因子化を拡張し、不確実な定量化を可能にする。
しかし、後続分布の計算は高次元積分により難解である。
これを解決するために、マルコフ・チェイン・モンテカルロ(MCMC) [3, 4] と変分推論 (VI) [5, 6] の2つのベイズ推定法を用いる。
我々はMovieLensデータセット [7] でそれらの性能を評価し、収束速度、予測精度、計算効率を比較した。
実験の結果、VI はより高速な収束を示し、MCMC はより正確な後方推定を提供することが示された。
関連論文リスト
- Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
本稿では,アフィニティ行列からクラスタ情報を復元するための正規化プロジェクション行列近似フレームワークを提案する。
3つの異なるペナルティ関数について検討し, それぞれが有界, 正, スパースシナリオに対応するように調整した。
合成および実世界の両方のデータセットで行った数値実験により、我々の正規化射影行列近似アプローチはクラスタリング性能において最先端の手法を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-26T15:18:22Z) - Variance-Reducing Couplings for Random Features [57.73648780299374]
ランダム機能(RF)は、機械学習においてカーネルメソッドをスケールアップする一般的なテクニックである。
ユークリッド空間と離散入力空間の両方で定義されるRFを改善するための結合を求める。
パラダイムとしての分散還元の利点と限界について、驚くほどの結論に達した。
論文 参考訳(メタデータ) (2024-05-26T12:25:09Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Unitary Approximate Message Passing for Matrix Factorization [90.84906091118084]
行列分解 (MF) を一定の制約で考慮し, 様々な分野の応用を見いだす。
我々は,効率の良いメッセージパッシング実装であるUAMPMFを用いて,MFに対するベイズ的アプローチを開発する。
UAMPMFは、回復精度、ロバスト性、計算複雑性の観点から、最先端のアルゴリズムを著しく上回ることを示す。
論文 参考訳(メタデータ) (2022-07-31T12:09:32Z) - FastSTMF: Efficient tropical matrix factorization algorithm for sparse
data [0.0]
機械学習における最も一般的な手法の一つである行列分解は、最近、熱帯セミリングを用いた予測タスクに非線形性を導入することで恩恵を受けている。
本研究では,STMF(Sparse Tropical Matrix Factorization)に基づく新しいFastSTMF法を提案する。
我々は,TCGAデータベースからの合成および実遺伝子発現データ上でFastSTMFを評価し,FastSTMFがSTMFの精度と実行時間の両方で優れていることを示す。
論文 参考訳(メタデータ) (2022-05-13T13:13:06Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Variance Reduction for Matrix Computations with Applications to Gaussian
Processes [0.0]
本稿では,行列分解による行列計算の分散化に着目する。
行列の平方根因数分解の計算は、いくつかの重要な場合において、任意により良い性能が得られることを示す。
論文 参考訳(メタデータ) (2021-06-28T10:41:22Z) - Adversarially-Trained Nonnegative Matrix Factorization [77.34726150561087]
非負行列ファクタリゼーションの逆学習版を検討する。
我々の定式化では、攻撃者は与えられたデータ行列に有界ノルムの任意の行列を追加する。
辞書と係数行列を最適化するために, 逆学習に触発された効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-04-10T13:13:17Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z) - Covariance Estimation for Matrix-valued Data [9.739753590548796]
本研究では,高次元行列データに対する分布自由正規化共分散推定法を提案する。
我々は、バンド可能な共分散を推定するための統一的な枠組みを定式化し、ランク1の制約のないクロネッカー積近似に基づく効率的なアルゴリズムを導入する。
格子状温度異常データセットとS&P 500ストックデータ解析によるシミュレーションと実応用を用いて,本手法の優れた有限サンプル性能を実証した。
論文 参考訳(メタデータ) (2020-04-11T02:15:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。