論文の概要: Transient anisotropic kernel for probabilistic learning on manifolds
- arxiv url: http://arxiv.org/abs/2407.21435v1
- Date: Wed, 31 Jul 2024 08:38:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 18:22:17.994866
- Title: Transient anisotropic kernel for probabilistic learning on manifolds
- Title(参考訳): 多様体上の確率論的学習のための過渡的異方性核
- Authors: Christian Soize, Roger Ghanem,
- Abstract要約: 我々は、一過性異方性カーネルから構築された新しいISDEプロジェクションベクトル基底を提案する。
この構成により、初期時間に近い時間に、DMAPS基底が過渡基底と一致することが保証される。
この新たなベクトル基底は、任意の次元の学習された確率測度における統計的依存関係をより良く表現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: PLoM (Probabilistic Learning on Manifolds) is a method introduced in 2016 for handling small training datasets by projecting an It\^o equation from a stochastic dissipative Hamiltonian dynamical system, acting as the MCMC generator, for which the KDE-estimated probability measure with the training dataset is the invariant measure. PLoM performs a projection on a reduced-order vector basis related to the training dataset, using the diffusion maps (DMAPS) basis constructed with a time-independent isotropic kernel. In this paper, we propose a new ISDE projection vector basis built from a transient anisotropic kernel, providing an alternative to the DMAPS basis to improve statistical surrogates for stochastic manifolds with heterogeneous data. The construction ensures that for times near the initial time, the DMAPS basis coincides with the transient basis. For larger times, the differences between the two bases are characterized by the angle of their spanned vector subspaces. The optimal instant yielding the optimal transient basis is determined using an estimation of mutual information from Information Theory, which is normalized by the entropy estimation to account for the effects of the number of realizations used in the estimations. Consequently, this new vector basis better represents statistical dependencies in the learned probability measure for any dimension. Three applications with varying levels of statistical complexity and data heterogeneity validate the proposed theory, showing that the transient anisotropic kernel improves the learned probability measure.
- Abstract(参考訳): PLoM(Probabilistic Learning on Manifolds, Probabilistic Learning on Manifolds)は、2016年にMCMCジェネレータとして機能し、トレーニングデータセットを用いたKDE推定確率測度が不変測度である確率散逸ハミルトン力学系からI\^o方程式を投影することにより、小さなトレーニングデータセットを扱う方法である。
PLoMは、時間非依存の等方性カーネルで構築された拡散マップ(DMAPS)ベースを用いて、トレーニングデータセットに関連する低次ベクトルベースで投影を行う。
本稿では、一過性異方性カーネルから構築された新しいISDE射影ベクトル基底を提案し、不均一なデータを持つ確率多様体の統計代用量を改善するためにDMAPS基底の代替となる。
この構成により、初期時間に近い時間に、DMAPS基底が過渡基底と一致することが保証される。
より長い時間に、2つの基底間の差は、その拡大ベクトル部分空間の角度によって特徴づけられる。
エントロピー推定により正規化され、推定に使用される実現数の影響を考慮に入れた情報理論からの相互情報の推定を用いて、最適過渡ベースを最適に生成する。
したがって、この新しいベクトル基底は、任意の次元の学習された確率測度における統計的依存関係をより良く表現する。
統計的複雑性とデータ不均一性の異なる3つの応用が提案された理論を検証し、過渡的異方性カーネルが学習された確率測定を改善することを示す。
関連論文リスト
- Structural adaptation via directional regularity: rate accelerated estimation in multivariate functional data [0.0]
向きの正則性は多変量関数データに対する新しい異方性の定義である。
収束速度の速さは基底の変化によって得られることを示す。
方向性正則性アプローチの2つの応用について論じる。
論文 参考訳(メタデータ) (2024-09-01T19:09:00Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry [0.0]
対称正定値多様体の対数ユークリッド幾何学を利用する共分散行列の多値推定器を導入する。
固定予算が与えられた推定器の平均二乗誤差を最小化する最適サンプル割り当て方式を開発した。
物理アプリケーションからのデータによるアプローチの評価は、ベンチマークと比較すると、より正確なメトリック学習と1桁以上のスピードアップを示している。
論文 参考訳(メタデータ) (2023-01-31T16:33:46Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Manifold embedding data-driven mechanics [0.0]
本稿では、可逆ニューラルネットワークによって生成された多様体の埋め込みを利用する、新しいデータ駆動型アプローチを紹介する。
深層ニューラルネットワークを訓練して、多様体から低次元ユークリッドベクトル空間にデータをグローバルにマッピングする。
論文 参考訳(メタデータ) (2021-12-18T04:38:32Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
経験的に、よく調和された正規化スキームは、推論されたモデルの品質を劇的に改善する。
生成的ペアワイドグラフィカルモデルの最大Aポストエリオーリ(MAP)推論におけるL2とL1の正規化について検討する。
論文 参考訳(メタデータ) (2021-12-02T14:45:16Z) - Information Theoretic Structured Generative Modeling [13.117829542251188]
構造生成モデル (Structured Generative Model, SGM) と呼ばれる新しい生成モデルフレームワークが提案され, 簡単な最適化が可能となった。
この実装では、無限のガウス混合モデルを学習するために適合した単一白色ノイズ源への正則入力によって駆動される1つのニューラルネットワークを採用している。
予備的な結果は、SGMがデータ効率と分散、従来のガウス混合モデルと変分混合モデル、および敵ネットワークのトレーニングにおいてMINE推定を著しく改善することを示している。
論文 参考訳(メタデータ) (2021-10-12T07:44:18Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。