論文の概要: Functional Neural Wavefunction Optimization
- arxiv url: http://arxiv.org/abs/2507.10835v1
- Date: Mon, 14 Jul 2025 22:07:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.903646
- Title: Functional Neural Wavefunction Optimization
- Title(参考訳): 関数型ニューラル波動関数最適化
- Authors: Victor Armegioiu, Juan Carrasquilla, Siddhartha Mishra, Johannes Müller, Jannes Nys, Marius Zeinhofer, Hang Zhang,
- Abstract要約: 本稿では,変分量子モンテカルロにおける最適化アルゴリズムの設計と解析のためのフレームワークを提案する。
このフレームワークは無限次元最適化力学を抽出可能なパラメータ空間アルゴリズムに変換する。
我々は,その実用的妥当性を示す数値実験により,我々の枠組みを検証した。
- 参考スコア(独自算出の注目度): 11.55213641895401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a framework for the design and analysis of optimization algorithms in variational quantum Monte Carlo, drawing on geometric insights into the corresponding function space. The framework translates infinite-dimensional optimization dynamics into tractable parameter-space algorithms through a Galerkin projection onto the tangent space of the variational ansatz. This perspective unifies existing methods such as stochastic reconfiguration and Rayleigh-Gauss-Newton, provides connections to classic function-space algorithms, and motivates the derivation of novel algorithms with geometrically principled hyperparameter choices. We validate our framework with numerical experiments demonstrating its practical relevance through the accurate estimation of ground-state energies for several prototypical models in condensed matter physics modeled with neural network wavefunctions.
- Abstract(参考訳): 本稿では,変分量子モンテカルロにおける最適化アルゴリズムの設計と解析のためのフレームワークを提案する。
このフレームワークは無限次元最適化力学をガレルキン射影から変分アンザッツの接空間への抽出可能なパラメータ空間アルゴリズムに変換する。
この観点は、確率的再構成やレイリー=ガウス=ニュートンのような既存の手法を統一し、古典的な関数空間アルゴリズムとの接続を提供し、幾何学的に原理化されたハイパーパラメータ選択を持つ新しいアルゴリズムの導出を動機付けている。
ニューラルネットワークの波動関数をモデル化した凝縮物質物理学におけるいくつかの原型モデルに対する基底状態エネルギーの正確な推定により、その実用的妥当性を示す数値実験により、我々の枠組みを検証した。
関連論文リスト
- Self-Supervised Coarsening of Unstructured Grid with Automatic Differentiation [55.88862563823878]
本研究では,微分可能物理の概念に基づいて,非構造格子を階層化するアルゴリズムを提案する。
多孔質媒質中のわずかに圧縮可能な流体流を制御した線形方程式と波動方程式の2つのPDE上でのアルゴリズムの性能を示す。
その結果,検討したシナリオでは,関心点におけるモデル変数のダイナミクスを保ちながら,格子点数を最大10倍に削減した。
論文 参考訳(メタデータ) (2025-07-24T11:02:13Z) - Learning Optical Flow Field via Neural Ordinary Differential Equation [44.16275288019991]
近年の光学フロー推定では、ニューラルネットワークを用いて、ある画像の位置を他方の位置にマッピングする流れ場を予測している。
連続モデル,すなわちニューラル常微分方程式(ODE)を用いて流れの微分を予測する新しい手法を提案する。
論文 参考訳(メタデータ) (2025-06-03T18:30:14Z) - KO: Kinetics-inspired Neural Optimizer with PDE Simulation Approaches [45.173398806932376]
本稿では、運動理論と偏微分方程式(PDE)シミュレーションにインスパイアされた新しい神経勾配であるKOを紹介する。
我々は、ネットワークパラメータの力学を、運動原理によって支配される粒子系の進化として再想像する。
この物理駆動のアプローチは、パラメータ凝縮の現象を緩和し、最適化中のパラメータの多様性を本質的に促進する。
論文 参考訳(メタデータ) (2025-05-20T18:00:01Z) - Geometry aware inference of steady state PDEs using Equivariant Neural Fields representations [0.0]
定常部分微分方程式を予測するエンコーダデコーダである enf2enf を導入する。
提案手法は、リアルタイム推論とゼロショット超解像をサポートし、低分解能メッシュの効率的なトレーニングを可能にする。
論文 参考訳(メタデータ) (2025-04-24T08:30:32Z) - Neural Network Approach to Stochastic Dynamics for Smooth Multimodal Density Estimation [0.0]
我々は、事前条件行列の固有性をランダム行列としてモデル化することで、メトロポリス調整ランゲヴィン拡散アルゴリズムを適用できる。
提案手法は, 統計モデルの局所構造の幾何を活用・適応するために, 提案密度を調整するための完全適応機構を提供する。
論文 参考訳(メタデータ) (2025-03-22T16:17:12Z) - Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
近年,変分量子回路の最適化のためのQNGアルゴリズムが提案されている。
モメンタムQNGは、変動パラメータ空間における局所的なミニマとプラトーを逃れるのにより効果的である。
論文 参考訳(メタデータ) (2024-09-03T15:21:16Z) - A hybrid numerical methodology coupling Reduced Order Modeling and Graph Neural Networks for non-parametric geometries: applications to structural dynamics problems [0.0]
本研究は、複雑な物理系を管理する時間領域偏微分方程式(PDE)の数値解析を高速化するための新しいアプローチを導入する。
この手法は、古典的低次モデリング(ROM)フレームワークと最近のパラメトリックグラフニューラルネットワーク(GNN)の組み合わせに基づいている。
論文 参考訳(メタデータ) (2024-06-03T08:51:25Z) - Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy [75.15685966213832]
最適化トラジェクトリのリッチな方向構造をポイントワイズパラメータで解析する。
トレーニング中のスカラーバッチノルムパラメータは,ネットワーク全体のトレーニング性能と一致していることを示す。
論文 参考訳(メタデータ) (2024-03-12T07:32:47Z) - Momentum Particle Maximum Likelihood [2.4561590439700076]
自由エネルギー関数を最小化するための類似の力学系に基づくアプローチを提案する。
システムを離散化することにより、潜在変数モデルにおける最大推定のための実用的なアルゴリズムを得る。
このアルゴリズムは既存の粒子法を数値実験で上回り、他のMLEアルゴリズムと比較する。
論文 参考訳(メタデータ) (2023-12-12T14:53:18Z) - Neural Characteristic Activation Analysis and Geometric Parameterization for ReLU Networks [2.2713084727838115]
本稿では,個々のニューロンの特徴的活性化境界を調べることによって,ReLUネットワークのトレーニングダイナミクスを解析するための新しいアプローチを提案する。
提案手法は,コンバージェンス最適化におけるニューラルネットワークのパラメータ化と正規化において重要な不安定性を示し,高速収束を阻害し,性能を損なう。
論文 参考訳(メタデータ) (2023-05-25T10:19:13Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
本稿では,2パラメータ統計力学系における熱力学関数と位相境界の再構成手法を提案する。
提案手法を用いて,IsingモデルとTASEPの分割関数と位相図を正確に再構成する。
論文 参考訳(メタデータ) (2022-05-18T17:11:23Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - Non-linear reduced modeling of dynamical systems using kernel methods and low-rank approximation [5.935306543481018]
我々は,カーネルヒルベルト空間における線形近似に基づく非線形力学のデータ駆動還元モデリングのための新しい効率的なアルゴリズムを提案する。
このアルゴリズムは、カーネルベースの計算を有利に活用しながら、低ランク制約最適化問題の閉形式解を利用する。
論文 参考訳(メタデータ) (2017-10-30T13:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。