論文の概要: Learn and Verify: A Framework for Rigorous Verification of Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2601.19818v1
- Date: Tue, 27 Jan 2026 17:21:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-28 15:26:51.414821
- Title: Learn and Verify: A Framework for Rigorous Verification of Physics-Informed Neural Networks
- Title(参考訳): 学習と検証:物理インフォームドニューラルネットワークの厳密な検証のためのフレームワーク
- Authors: Kazuaki Tanaka, Kohei Yatabe,
- Abstract要約: 微分方程式の解に対して計算可能で数学的に厳密な誤差境界を提供する枠組みを提案する。
学習用DSM(Douubly Smoothed Maximum)損失と検証用インターバル算術を組み合わせることで,厳密なアフターリエラー境界をマシン検証可能な証明として計算する。
- 参考スコア(独自算出の注目度): 12.111053304637808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The numerical solution of differential equations using neural networks has become a central topic in scientific computing, with Physics-Informed Neural Networks (PINNs) emerging as a powerful paradigm for both forward and inverse problems. However, unlike classical numerical methods that offer established convergence guarantees, neural network-based approximations typically lack rigorous error bounds. Furthermore, the non-deterministic nature of their optimization makes it difficult to mathematically certify their accuracy. To address these challenges, we propose a "Learn and Verify" framework that provides computable, mathematically rigorous error bounds for the solutions of differential equations. By combining a novel Doubly Smoothed Maximum (DSM) loss for training with interval arithmetic for verification, we compute rigorous a posteriori error bounds as machine-verifiable proofs. Numerical experiments on nonlinear Ordinary Differential Equations (ODEs), including problems with time-varying coefficients and finite-time blow-up, demonstrate that the proposed framework successfully constructs rigorous enclosures of the true solutions, establishing a foundation for trustworthy scientific machine learning.
- Abstract(参考訳): ニューラルネットワークを用いた微分方程式の数値解は、物理情報ニューラルネットワーク(PINN)が前方および逆問題の両方の強力なパラダイムとして登場し、科学計算において中心的な話題となっている。
しかし、確立された収束保証を提供する古典的な数値法とは異なり、ニューラルネットワークに基づく近似は通常厳密な誤差境界を欠いている。
さらに、その最適化の非決定論的性質は、その正確さを数学的に証明することを困難にしている。
これらの課題に対処するために、微分方程式の解に対して計算可能で数学的に厳密な誤差境界を提供する「Learn and Verify」フレームワークを提案する。
学習用DSM(Douubly Smoothed Maximum)損失と検証用インターバル算術を組み合わせることで,厳密なアフターリエラー境界をマシン検証可能な証明として計算する。
非線形常微分方程式 (ODE) に関する数値実験により, 時間変動係数や有限時間爆破による問題を含む実験により, 提案手法が真の解の厳密な囲いを構築することに成功し, 信頼性の高い科学的機械学習の基礎を築いた。
関連論文リスト
- NewPINNs: Physics-Informing Neural Networks Using Conventional Solvers for Partial Differential Equations [6.108807911620144]
ニューラルネットワークと従来の数値解法を結合する物理情報処理学習フレームワークであるNewPINNを紹介する。
NewPINNは、ソルバを直接トレーニングループに統合し、ソルバ一貫性による学習目標を定義する。
本稿では, 有限体積, 有限要素, スペクトル解法を含む複数前方および逆問題に対する提案手法の有効性を示す。
論文 参考訳(メタデータ) (2026-01-23T22:34:57Z) - Stiff Transfer Learning for Physics-Informed Neural Networks [1.5361702135159845]
本研究では, 物理インフォームドニューラルネットワーク(STL-PINN)の高次常微分方程式 (ODE) と偏微分方程式 (PDE) に挑戦する新しい手法を提案する。
提案手法は, マルチヘッドPINNを低剛性体制で訓練し, トランスファーラーニングにより高剛性体制で最終解を得る。
これにより、PINNの剛性に関連する障害モードに対処し、「ワンショット」ソリューションを計算することで計算効率を維持できる。
論文 参考訳(メタデータ) (2025-01-28T20:27:38Z) - Physics-Informed Generator-Encoder Adversarial Networks with Latent
Space Matching for Stochastic Differential Equations [14.999611448900822]
微分方程式における前方・逆・混合問題に対処するために,新しい物理情報ニューラルネットワークのクラスを提案する。
我々のモデルは、ジェネレータとエンコーダの2つのキーコンポーネントで構成され、どちらも勾配降下によって交互に更新される。
従来の手法とは対照的に、より低次元の潜在特徴空間内で機能する間接マッチングを用いる。
論文 参考訳(メタデータ) (2023-11-03T04:29:49Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
限定データによる微分方程式の解法として,注目型数値解法(AttNS)を提案する。
AttNSは、モデル一般化とロバスト性の向上におけるResidual Neural Networks(ResNet)のアテンションモジュールの効果にインスパイアされている。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Evaluating Error Bound for Physics-Informed Neural Networks on Linear
Dynamical Systems [1.2891210250935146]
本稿では、微分方程式の線形系のクラスで訓練された物理インフォームドニューラルネットワークに対して、数学的に明示的な誤差境界を導出できることを示す。
我々の研究は、損失関数として知られ、使われているネットワーク残基と、一般には知られていない解の絶対誤差とのリンクを示す。
論文 参考訳(メタデータ) (2022-07-03T20:23:43Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。