論文の概要: Trading T gates for dirty qubits in state preparation and unitary synthesis
- arxiv url: http://arxiv.org/abs/1812.00954v2
- Date: Tue, 11 Jun 2024 21:32:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 02:02:19.129281
- Title: Trading T gates for dirty qubits in state preparation and unitary synthesis
- Title(参考訳): 状態準備と一元合成における汚れ量子ビットのTゲート
- Authors: Guang Hao Low, Vadym Kliuchnikov, Luke Schaeffer,
- Abstract要約: 古典的数のリストで指定された任意の次元-$N$純量子状態を作成するための量子アルゴリズムを提案する。
我々のスキームは、$mathcalO(fracNlambda+lambdalogfracNepsilonlogNepsilon)$を使用して、Tゲートコストを$mathcalO(fracNlambda+lambdalogfracNepsilon)$に削減します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient synthesis of arbitrary quantum states and unitaries from a universal fault-tolerant gate-set e.g. Clifford+T is a key subroutine in quantum computation. As large quantum algorithms feature many qubits that encode coherent quantum information but remain idle for parts of the computation, these should be used if it minimizes overall gate counts, especially that of the expensive T-gates. We present a quantum algorithm for preparing any dimension-$N$ pure quantum state specified by a list of $N$ classical numbers, that realizes a trade-off between space and T-gates. Our scheme uses $\mathcal{O}(\log{(N/\epsilon)})$ clean qubits and a tunable number of $\sim(\lambda\log{(\frac{\log{N}}{\epsilon})})$ dirty qubits, to reduce the T-gate cost to $\mathcal{O}(\frac{N}{\lambda}+\lambda\log{\frac{N}{\epsilon}}\log{\frac{\log{N}}{\epsilon}})$. This trade-off is optimal up to logarithmic factors, proven through an unconditional gate counting lower bound, and is, in the best case, a quadratic improvement in T-count over prior ancillary-free approaches. We prove similar statements for unitary synthesis by reduction to state preparation. Underlying our constructions is a T-efficient circuit implementation of a quantum oracle for arbitrary classical data.
- Abstract(参考訳): 普遍的なフォールトトレラントゲートセット e g Clifford+T からの任意の量子状態とユニタリの効率的な合成は、量子計算における重要なサブルーチンである。
大規模な量子アルゴリズムは、コヒーレントな量子情報を符号化する多くの量子ビットを特徴としているが、計算の一部にアイドルを保っているため、ゲート数、特に高価なTゲートの数を最小化すれば、これらを用いるべきである。
我々は、空間とTゲートの間のトレードオフを実現するため、任意の次元-$N$純量子状態を作成する量子アルゴリズムを提案する。
我々のスキームは、$\mathcal{O}(\log{(N/\epsilon)})$ clean qubitsと$\sim(\lambda\log{(\frac{\log{N}}{\epsilon})})$ dirty qubitsを使って、Tゲートコストを$\mathcal{O}(\frac{N}{\lambda}+\lambda\log{\frac{N}{\epsilon}}\log{\log{N}}{\epsilon}})$に下げる。
このトレードオフは、下界を数える無条件ゲートを通して証明された対数的因子に最適であり、最良の場合、前回の無条件アプローチよりもTカウントの二次的な改善である。
状態生成への還元によるユニタリ合成についても同様のことが証明されている。
我々の構成は、任意の古典的データに対する量子オラクルのT効率回路の実装である。
関連論文リスト
- Space-Efficient Quantum Error Reduction without log Factors [50.10645865330582]
本稿では,多数決のランダムウォーク解釈に類似したライン上の重み付けウォークとして理解可能な,新たに単純化された浄化器の構成を提案する。
我々の浄化器は、前者よりも指数関数的に空間の複雑さが良く、精製されるアルゴリズムの音質-完全性ギャップに四分法的に依存している。
論文 参考訳(メタデータ) (2025-02-13T12:04:39Z) - Circuit Complexity of Sparse Quantum State Preparation [0.0]
任意の$n$-qubit $d$-sparse量子状態は、$O(fracdnlog d)$とdeep $Theta(log dn)$の量子回路で、少なくとも$O(fracndlog d )$ acillary qubitsを用いて作成できることを示す。
また、回路サイズに$Omega(fracdnlog(n + m) + log d + n)$ という下界の$Omega(fracdnlog(n + m) + log d + n)$ を設定できる。
論文 参考訳(メタデータ) (2024-06-23T15:28:20Z) - Efficient Fault-Tolerant Single Qubit Gate Approximation And Universal Quantum Computation Without Using The Solovay-Kitaev Theorem [0.0]
最近のソロワ=キタエフの定理の改善により、任意の単一量子ゲートを$epsilon > 0$ の精度で近似するには$textO(logc[1/epsilon)$ $c > 1.44042$ の量子ゲートが必要であることが示されている。
ここでは、この質問に対する部分的な回答として、$textO(log[/epsilon] loglog[/epsilon] cdots)$ FT gates が $ の値に依存する有限集合から選択されることを示す。
論文 参考訳(メタデータ) (2024-06-07T11:21:05Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
我々は,所定の回路を実装するために必要なTゲート数を最小化する手法であるAlphaTensor-Quantumを開発した。
Tカウント最適化の既存の方法とは異なり、AlphaTensor-Quantumは量子計算に関するドメイン固有の知識を取り入れ、ガジェットを活用することができる。
注目すべきは、有限体における乗法であるカラツバの手法に似た効率的なアルゴリズムを発見することである。
論文 参考訳(メタデータ) (2024-02-22T09:20:54Z) - Space-Efficient and Noise-Robust Quantum Factoring [10.974556218898435]
我々はRegevの最近の量子ファクタリングアルゴリズム(arXiv:2308.06572)を改善する。
我々は独立に$approx sqrtn$ timesを実行し、Regevの古典的な後処理手順を適用する。
第二の貢献は、レゲフの古典的な後処理手順が量子回路の一定の部分の誤りを許容するために修正可能であることを示すことである。
論文 参考訳(メタデータ) (2023-10-02T04:31:21Z) - Spacetime-Efficient Low-Depth Quantum State Preparation with
Applications [93.56766264306764]
任意の量子状態を作成するための新しい決定論的手法は、以前の方法よりも少ない量子資源を必要とすることを示す。
我々は、量子機械学習、ハミルトンシミュレーション、方程式の線形系を解くことなど、この能力が役立ついくつかのアプリケーションを強調した。
論文 参考訳(メタデータ) (2023-03-03T18:23:20Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
回路レベルの実装とリソース推定を行い、古典データの高密度な$Ntimes N$行列をブロックエンコードして$epsilon$を精度良くすることができる。
異なるアプローチ間のリソーストレードオフを調査し、量子ランダムアクセスメモリ(QRAM)の2つの異なるモデルの実装を検討する。
我々の結果は、単純なクエリの複雑さを超えて、大量の古典的データが量子アルゴリズムにアクセスできると仮定された場合のリソースコストの明確な図を提供する。
論文 参考訳(メタデータ) (2022-06-07T18:00:01Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
しきい値定理は、フォールトトレラント量子計算の理論における基本的な結果である。
振幅雑音を伴う耐故障性量子計算の最大長に対する指数的上限を証明した。
論文 参考訳(メタデータ) (2022-01-31T22:19:49Z) - Halving the cost of quantum multiplexed rotations [0.0]
我々は、$c$制御を持つ多重量子ゲートの$b$-bit近似に必要な$T$ゲートの数を改善する。
以上の結果から,2要素あるいはテンソルハイパーコントラクション表現の量子化に基づく最先端電子構造シミュレーションのコストを約半分に抑えることができた。
論文 参考訳(メタデータ) (2021-10-26T06:49:44Z) - A polynomial time and space heuristic algorithm for T-count [2.28438857884398]
この研究は、最先端のフォールトトレラントな量子エラー訂正符号を使用する場合の量子アルゴリズム実装の物理的コストの低減に重点を置いている。
普遍ゲート集合であるクリフォード+Tゲート集合からなる量子回路によって正確に実装できるユニタリ群を考える。
論文 参考訳(メタデータ) (2020-06-22T17:21:41Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
本稿では、生成した状態の古典的ベクトル形式を生成する効率的な読み出しプロトコルを提案する。
我々のプロトコルは、出力状態が入力行列の行空間にある場合に適合する。
我々の技術ツールの1つは、Gram-Schmidt正則手順を実行するための効率的な量子アルゴリズムである。
論文 参考訳(メタデータ) (2020-04-14T11:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。