論文の概要: Numerically Solving Parametric Families of High-Dimensional Kolmogorov
Partial Differential Equations via Deep Learning
- arxiv url: http://arxiv.org/abs/2011.04602v1
- Date: Mon, 9 Nov 2020 17:57:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 00:42:05.692893
- Title: Numerically Solving Parametric Families of High-Dimensional Kolmogorov
Partial Differential Equations via Deep Learning
- Title(参考訳): 深層学習による高次元コルモゴロフ偏微分方程式のパラメトリックファミリーの数値解法
- Authors: Julius Berner, Markus Dablander, Philipp Grohs
- Abstract要約: 高次元線形コルモゴロフ偏微分方程式(PDE)のパラメトリック族に対する数値解のディープラーニングアルゴリズムを提案する。
本手法は,Fynman-Kac式を用いた1つの統計的学習問題として,コルモゴロフ PDE の族全体の数値近似を再構成した。
シミュレーションデータに基づいてトレーニングされた1つのディープニューラルネットワークが、全時空領域のPDEファミリー全体の解関数を学習可能であることを示す。
- 参考スコア(独自算出の注目度): 8.019491256870557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a deep learning algorithm for the numerical solution of parametric
families of high-dimensional linear Kolmogorov partial differential equations
(PDEs). Our method is based on reformulating the numerical approximation of a
whole family of Kolmogorov PDEs as a single statistical learning problem using
the Feynman-Kac formula. Successful numerical experiments are presented, which
empirically confirm the functionality and efficiency of our proposed algorithm
in the case of heat equations and Black-Scholes option pricing models
parametrized by affine-linear coefficient functions. We show that a single deep
neural network trained on simulated data is capable of learning the solution
functions of an entire family of PDEs on a full space-time region. Most
notably, our numerical observations and theoretical results also demonstrate
that the proposed method does not suffer from the curse of dimensionality,
distinguishing it from almost all standard numerical methods for PDEs.
- Abstract(参考訳): 本稿では,高次元線形コルモゴロフ偏微分方程式(pdes)のパラメトリックファミリーの数値解に対する深層学習アルゴリズムを提案する。
本手法は,Fynman-Kac式を用いた1つの統計的学習問題として,コルモゴロフPDE全体の数値近似を再構成した。
熱方程式およびアフィン-線形係数関数でパラメータ化したブラック・スコールのオプション価格モデルにおいて,提案アルゴリズムの機能と効率を実証的に検証した。
シミュレーションデータに基づいてトレーニングされた1つのディープニューラルネットワークが、全時空領域のPDEファミリー全体の解関数を学習可能であることを示す。
最も注目すべきは、我々の数値観測と理論的結果は、提案手法が次元の呪いを被っていないことを示し、pdesのほとんどすべての標準数値手法と区別している。
関連論文リスト
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Approximation of Solution Operators for High-dimensional PDEs [2.3076986663832044]
進化的偏微分方程式の解演算子を近似する有限次元制御法を提案する。
結果は、ハミルトン・ヤコビ・ベルマン方程式を解くための実世界の応用を含む、いくつかの高次元PDEに対して提示される。
論文 参考訳(メタデータ) (2024-01-18T21:45:09Z) - Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
本研究では,データ活用を必要とせずにパラメトリック偏微分方程式(PDE)を解く演算子に基づく新しい手法を提案する。
提案手法は,既存の科学的機械学習技術と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-03T12:37:15Z) - Finite Element Operator Network for Solving Parametric PDEs [10.855582917943092]
偏微分方程式(PDE)は自然現象の理解と予測の基盤となる。
有限要素演算子ネットワーク(FEONet)を用いたパラメトリックPDEの解法を提案する。
論文 参考訳(メタデータ) (2023-08-09T03:56:07Z) - Multilevel CNNs for Parametric PDEs [0.0]
偏微分方程式に対する多段階解法の概念とニューラルネットワークに基づくディープラーニングを組み合わせる。
より詳細な理論的解析により,提案アーキテクチャは乗算Vサイクルを任意の精度で近似できることを示した。
最先端のディープラーニングベースの解法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-04-01T21:11:05Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Data-Driven Theory-guided Learning of Partial Differential Equations
using SimultaNeous Basis Function Approximation and Parameter Estimation
(SNAPE) [0.0]
本稿では,高レベルの雑音に対して頑健な偏微分方程式(PDE)のパラメータ推定手法を提案する。
SNAPEは、幅広い科学領域を含む様々な複雑な力学系に適用可能であることを証明している。
この方法は、よく確立された科学理論の知識とデータサイエンスの概念を体系的に組み合わせ、観察されたデータからプロセスの特性を推測する。
論文 参考訳(メタデータ) (2021-09-14T22:54:30Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。