論文の概要: Variational Physics Informed Neural Networks: the role of quadratures
and test functions
- arxiv url: http://arxiv.org/abs/2109.02035v1
- Date: Sun, 5 Sep 2021 10:06:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-08 06:49:30.973707
- Title: Variational Physics Informed Neural Networks: the role of quadratures
and test functions
- Title(参考訳): 変分物理学インフォームドニューラルネットワーク:二次関数とテスト関数の役割
- Authors: Stefano Berrone, Claudio Canuto and Moreno Pintore
- Abstract要約: 変分物理学インフォームドニューラルネットワーク(VPINN)の収束率に異なる精度のガウスあるいはニュートン・コートの二次規則と異なる等級の分数的テスト関数がどう影響するかを解析する。
Inf-sup条件に依存したペトロフ・ガレルキンの枠組みを用いて、計算されたニューラルネットワークの最適高次分数補間と正確な解のエネルギーノルムの優先誤差を推定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we analyze how Gaussian or Newton-Cotes quadrature rules of
different precisions and piecewise polynomial test functions of different
degrees affect the convergence rate of Variational Physics Informed Neural
Networks (VPINN) with respect to mesh refinement, while solving elliptic
boundary-value problems. Using a Petrov-Galerkin framework relying on an
inf-sup condition, we derive an a priori error estimate in the energy norm
between the exact solution and a suitable high-order piecewise interpolant of a
computed neural network. Numerical experiments confirm the theoretical
predictions, and also indicate that the error decay follows the same behavior
when the neural network is not interpolated. Our results suggest, somehow
counterintuitively, that for smooth solutions the best strategy to achieve a
high decay rate of the error consists in choosing test functions of the lowest
polynomial degree, while using quadrature formulas of suitably high precision.
- Abstract(参考訳): 本研究では,異なる精度のガウスあるいはニュートン・コートの二次規則と,異なる次数の多項式テスト関数が,メッシュの洗練に関する変分物理学情報ニューラルネットワーク(VPINN)の収束率にどのように影響するかを,楕円境界値問題を解きながら解析する。
inf-sup条件に依存するpetrov-galerkinフレームワークを用いて、計算されたニューラルネットワークの適切な高次区分補間と厳密な解の間のエネルギーノルムにおけるa優先誤差推定を導出する。
数値実験により理論的予測が確定し、ニューラルネットワークが補間されていない場合の誤差崩壊が同じ挙動を辿ることを示す。
この結果から, 滑らかな解法において, 誤差の崩壊率の高い最適戦略は, 適度に高い精度の二次式を用いながら, 最小多項式の試験関数を選択することであることが示唆された。
関連論文リスト
- A new approach to generalisation error of machine learning algorithms:
Estimates and convergence [0.0]
本稿では,(一般化)誤差の推定と収束に対する新しいアプローチを提案する。
本研究の結果は,ニューラルネットワークの構造的仮定を伴わない誤差の推定を含む。
論文 参考訳(メタデータ) (2023-06-23T20:57:31Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
本稿では,新しい半解析的物理情報ニューラルネットワーク(PINN)を提案し,特異な摂動境界値問題の解法を提案する。
PINNは、偏微分方程式の数値解を見つけるための有望な視点を提供する科学機械学習フレームワークである。
論文 参考訳(メタデータ) (2022-08-19T04:26:40Z) - Physics-Informed Neural Networks for Quantum Eigenvalue Problems [1.2891210250935146]
固有値問題は、科学と工学のいくつかの分野において重要な問題である。
我々は、教師なしニューラルネットワークを用いて、微分固有値問題に対する固有関数と固有値を発見する。
ネットワーク最適化はデータフリーであり、ニューラルネットワークの予測にのみ依存する。
論文 参考訳(メタデータ) (2022-02-24T18:29:39Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
本研究では,ソルバ空間の変動がニューラルODEの性能を向上する方法について検討する。
解法パラメータ化の正しい選択は, 敵の攻撃に対するロバスト性の観点から, 神経odesモデルに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2021-03-15T17:26:34Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNのアプローチは、最適化の強い制約としてPDEを尊重しながらニューラルネットワークのトレーニングを可能にします。
標準的な小規模循環シミュレーションでは、従来のアプローチは乱流拡散モデルの効果とほぼ同じ大きさの擬似拡散効果を組み込むことが示されている。
テストされた全てのスキームのうち、ピンズ近似のみが結果を正確に予測した。
論文 参考訳(メタデータ) (2021-03-15T05:39:17Z) - Neural Network Approximations of Compositional Functions With
Applications to Dynamical Systems [3.660098145214465]
我々は,合成関数とそのニューラルネットワーク近似の近似理論を開発した。
構成関数の重要な特徴の集合と,ニューラルネットワークの特徴と複雑性の関係を同定する。
関数近似に加えて、ニューラルネットワークの誤差上限の式もいくつか証明する。
論文 参考訳(メタデータ) (2020-12-03T04:40:25Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。