論文の概要: One-Shot Transfer Learning of Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2110.11286v1
- Date: Thu, 21 Oct 2021 17:14:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-22 18:48:02.798290
- Title: One-Shot Transfer Learning of Physics-Informed Neural Networks
- Title(参考訳): 物理インフォームドニューラルネットワークのワンショットトランスファー学習
- Authors: Shaan Desai, Marios Mattheakis, Hayden Joy, Pavlos Protopapas, Stephen
Roberts
- Abstract要約: 本稿では,通常の微分方程式と偏微分方程式の両方の線形系に対して,一発の推論結果をもたらす伝達学習PINNの枠組みを提案する。
これは、多くの未知の微分方程式に対する高精度な解は、ネットワーク全体を再訓練することなく瞬時に得られることを意味する。
- 参考スコア(独自算出の注目度): 2.6084034060847894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving differential equations efficiently and accurately sits at the heart
of progress in many areas of scientific research, from classical dynamical
systems to quantum mechanics. There is a surge of interest in using
Physics-Informed Neural Networks (PINNs) to tackle such problems as they
provide numerous benefits over traditional numerical approaches. Despite their
potential benefits for solving differential equations, transfer learning has
been under explored. In this study, we present a general framework for transfer
learning PINNs that results in one-shot inference for linear systems of both
ordinary and partial differential equations. This means that highly accurate
solutions to many unknown differential equations can be obtained
instantaneously without retraining an entire network. We demonstrate the
efficacy of the proposed deep learning approach by solving several real-world
problems, such as first- and second-order linear ordinary equations, the
Poisson equation, and the time-dependent Schrodinger complex-value partial
differential equation.
- Abstract(参考訳): 微分方程式を効率的に正確に解くことは、古典力学系から量子力学まで、科学研究の多くの分野の進歩の中心にある。
物理情報ニューラルネットワーク(PINN)は、従来の数値手法よりも多くの利点を提供するため、このような問題に対処する関心が高まっている。
微分方程式を解くための潜在的な利点にもかかわらず、転送学習は検討されている。
本研究では, 常微分方程式と偏微分方程式の両方の線形系に対して, ワンショット推論を行うトランスファー学習ピンの汎用フレームワークを提案する。
これは、多くの未知の微分方程式に対する高精度な解は、ネットワーク全体を再訓練することなく瞬時に得られることを意味する。
本研究では,一階および二階線形正規方程式,ポアソン方程式,時間依存シュロディンガー複素値偏微分方程式などの実世界問題を解くことで,深層学習手法の有効性を示す。
関連論文リスト
- Self-Adaptive Physics-Informed Quantum Machine Learning for Solving Differential Equations [0.0]
チェビシェフは、古典的および量子的ニューラルネットワークが微分方程式を解くための効率的なツールとして有望であることを示した。
我々は、このフレームワークを様々な問題に対して量子機械学習環境に適応し、一般化する。
その結果,量子デバイス上での微分方程式の短期的評価に対する有望なアプローチが示唆された。
論文 参考訳(メタデータ) (2023-12-14T18:46:35Z) - Transfer Learning with Physics-Informed Neural Networks for Efficient
Simulation of Branched Flows [1.1470070927586016]
物理インフォームドニューラルネットワーク(PINN)は微分方程式を解くための有望なアプローチを提供する。
PINNに対して最近開発されたトランスファー学習アプローチを採用し,マルチヘッドモデルを提案する。
提案手法は,スクラッチからトレーニングした標準PINNと比較して,計算速度が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-11-01T01:50:00Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Stochastic Scaling in Loss Functions for Physics-Informed Neural
Networks [0.0]
訓練されたニューラルネットワークは普遍関数近似器として機能し、新しい方法で微分方程式を数値的に解くことができる。
従来の損失関数とトレーニングパラメータのバリエーションは、ニューラルネットワーク支援ソリューションをより効率的にする上で有望であることを示している。
論文 参考訳(メタデータ) (2022-08-07T17:12:39Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Quantum Model-Discovery [19.90246111091863]
微分方程式を解くための量子アルゴリズムは、フォールトトレラントな量子コンピューティングシステムにおいて証明可能な優位性を示している。
我々は、短期量子コンピュータの適用性を、より一般的な科学的な機械学習タスクに拡張する。
本結果は,古典的および量子機械学習アプローチのインターフェースにおける量子モデル探索(QMoD)への有望な経路を示す。
論文 参考訳(メタデータ) (2021-11-11T18:45:52Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Physics-informed neural networks for the shallow-water equations on the
sphere [0.0]
物理誘導ニューラルネットワークは、所定の初期および境界データと共に微分方程式を満たすように訓練される。
比較的長い時間間隔のテストケースに取り組むための単純なマルチモデルアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-01T16:47:40Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。