論文の概要: Stochastic Scaling in Loss Functions for Physics-Informed Neural
Networks
- arxiv url: http://arxiv.org/abs/2208.03776v1
- Date: Sun, 7 Aug 2022 17:12:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-09 14:30:32.988122
- Title: Stochastic Scaling in Loss Functions for Physics-Informed Neural
Networks
- Title(参考訳): 物理インフォームドニューラルネットワークにおける損失関数の確率スケーリング
- Authors: Ethan Mills, Alexey Pozdnyakov
- Abstract要約: 訓練されたニューラルネットワークは普遍関数近似器として機能し、新しい方法で微分方程式を数値的に解くことができる。
従来の損失関数とトレーニングパラメータのバリエーションは、ニューラルネットワーク支援ソリューションをより効率的にする上で有望であることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differential equations are used in a wide variety of disciplines, describing
the complex behavior of the physical world. Analytic solutions to these
equations are often difficult to solve for, limiting our current ability to
solve complex differential equations and necessitating sophisticated numerical
methods to approximate solutions. Trained neural networks act as universal
function approximators, able to numerically solve differential equations in a
novel way. In this work, methods and applications of neural network algorithms
for numerically solving differential equations are explored, with an emphasis
on varying loss functions and biological applications. Variations on
traditional loss function and training parameters show promise in making neural
network-aided solutions more efficient, allowing for the investigation of more
complex equations governing biological principles.
- Abstract(参考訳): 微分方程式は様々な分野において使われ、物理的な世界の複雑な振る舞いを記述する。
これらの方程式の解析解はしばしば解決が困難であり、複素微分方程式を解く現在の能力を制限し、近似解に洗練された数値法を必要とする。
訓練されたニューラルネットワークは普遍関数近似器として働き、新しい方法で微分方程式を数値的に解くことができる。
本研究では, 微分方程式を数値解くニューラルネットワークアルゴリズムの手法と応用について検討し, 損失関数と生物学的応用に注目した。
従来の損失関数とトレーニングパラメータのバリエーションは、ニューラルネットワーク支援ソリューションをより効率的にすることで、生物学的原理を管理するより複雑な方程式の研究を可能にする。
関連論文リスト
- NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Neuro-symbolic partial differential equation solver [0.0]
本稿では,科学計算における数値離散化からメッシュフリーなニューロシンボリック偏微分方程式解法を開発するための戦略を提案する。
この戦略は、解関数と微分演算子のモデルのニューラルネットワークサロゲートモデルを効率的に訓練するために使用できるという点でユニークなものである。
論文 参考訳(メタデータ) (2022-10-25T22:56:43Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - One-Shot Transfer Learning of Physics-Informed Neural Networks [2.6084034060847894]
本稿では,通常の微分方程式と偏微分方程式の両方の線形系に対して,一発の推論結果をもたらす伝達学習PINNの枠組みを提案する。
これは、多くの未知の微分方程式に対する高精度な解は、ネットワーク全体を再訓練することなく瞬時に得られることを意味する。
論文 参考訳(メタデータ) (2021-10-21T17:14:58Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Neural Network Approximations of Compositional Functions With
Applications to Dynamical Systems [3.660098145214465]
我々は,合成関数とそのニューラルネットワーク近似の近似理論を開発した。
構成関数の重要な特徴の集合と,ニューラルネットワークの特徴と複雑性の関係を同定する。
関数近似に加えて、ニューラルネットワークの誤差上限の式もいくつか証明する。
論文 参考訳(メタデータ) (2020-12-03T04:40:25Z) - Symbolically Solving Partial Differential Equations using Deep Learning [5.1964883240501605]
本稿では、微分方程式の正確な解や近似解を生成するニューラルネットワーク手法について述べる。
他のニューラルネットワークとは異なり、我々のシステムは直接解釈できるシンボリック表現を返す。
論文 参考訳(メタデータ) (2020-11-12T22:16:03Z) - A Neuro-Symbolic Method for Solving Differential and Functional
Equations [6.899578710832262]
微分方程式を解くために記号式を生成する方法を提案する。
既存の手法とは異なり、このシステムは記号数学よりも言語モデルを学習する必要はない。
我々は,他の数学的課題に対するシンボリックな解を見つけるために,システムがいかに懸命に一般化されるかを示す。
論文 参考訳(メタデータ) (2020-11-04T17:13:25Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。