論文の概要: Euclidean and Affine Curve Reconstruction
- arxiv url: http://arxiv.org/abs/2201.09929v3
- Date: Fri, 29 Mar 2024 20:10:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 16:23:34.913854
- Title: Euclidean and Affine Curve Reconstruction
- Title(参考訳): EuclideanとAffine Curveの再建
- Authors: Jose Agudelo, Brooke Dippold, Ian Klein, Alex Kokot, Eric Geiger, Irina Kogan,
- Abstract要約: 所定のユークリッド曲率やアフィン曲率で平面曲線を再構成する実践的側面を考察する。
これらの曲率はそれぞれ特殊ユークリッド群と同値群の下で不変である。
このような再構成のためのアルゴリズムを議論し実装し、適切な測定値における曲率の密接度に対する再構成曲線の密接度を推定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider practical aspects of reconstructing planar curves with prescribed Euclidean or affine curvatures. These curvatures are invariant under the special Euclidean group and the equi-affine groups, respectively, and play an important role in computer vision and shape analysis. We discuss and implement algorithms for such reconstruction, and give estimates on how close reconstructed curves are relative to the closeness of their curvatures in appropriate metrics. Several illustrative examples are provided.
- Abstract(参考訳): 所定のユークリッド曲率やアフィン曲率で平面曲線を再構成する実践的側面を考察する。
これらの曲率はそれぞれ特殊ユークリッド群と等アフィン群の下で不変であり、コンピュータビジョンや形状解析において重要な役割を果たす。
このような再構成のためのアルゴリズムを議論し実装し、適切な測定値における曲率の密接度に対する再構成曲線の密接度を推定する。
いくつかの例を挙げる。
関連論文リスト
- Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
本稿では, 推定パラメータが滑らかな多様体内にある推定問題に対して, 新たな性能境界を提案する。
これはパラメータ多様体の幾何学と推定誤差測度の本質的な概念を誘導する。
論文 参考訳(メタデータ) (2023-11-08T15:17:13Z) - The Fisher-Rao geometry of CES distributions [50.50897590847961]
Fisher-Rao情報幾何学は、ツールを微分幾何学から活用することができる。
楕円分布の枠組みにおけるこれらの幾何学的ツールの実用的利用について述べる。
論文 参考訳(メタデータ) (2023-10-02T09:23:32Z) - Principal subbundles for dimension reduction [0.07515511160657122]
我々は、多様体学習や曲面再構成にサブリーマン幾何学をどのように利用できるかを示す。
ノイズの多いデータに適用すると,フレームワークが堅牢であることを示す。
論文 参考訳(メタデータ) (2023-07-06T16:55:21Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Shape And Structure Preserving Differential Privacy [70.08490462870144]
正方形距離関数の勾配がラプラス機構よりも感度をよりよく制御できることを示す。
また,2乗距離関数の勾配を用いることで,ラプラス機構よりも感度を制御できることを示す。
論文 参考訳(メタデータ) (2022-09-21T18:14:38Z) - Curved Geometric Networks for Visual Anomaly Recognition [39.91252195360767]
データ分布の根底にある性質を理解するために潜伏埋め込みを学ぶことは、曲率ゼロのユークリッド空間でしばしば定式化される。
本研究では,データ中の異常やアウト・オブ・ディストリビューション・オブジェクトを解析するための曲線空間の利点について検討する。
論文 参考訳(メタデータ) (2022-08-02T01:15:39Z) - Geometric Methods for Sampling, Optimisation, Inference and Adaptive
Agents [102.42623636238399]
我々は,サンプリング,最適化,推論,適応的意思決定といった問題に根ざした基本的な幾何学的構造を同定する。
これらの問題を効率的に解くためにこれらの幾何学的構造を利用するアルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-03-20T16:23:17Z) - Deep Signatures -- Learning Invariants of Planar Curves [12.699486382844393]
平面曲線の微分不変量の数値近似のための学習パラダイムを提案する。
深層ニューラルネットワーク(DNN)の普遍近似特性を用いて幾何学的測度を推定する。
論文 参考訳(メタデータ) (2022-02-11T22:34:15Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
ユークリッド空間における測度保存拡散の完全なレシピは、最近、いくつかのMCMCアルゴリズムを単一のフレームワークに統合した。
我々は、この構成を任意の多様体に改善し一般化する幾何学理論を開発する。
論文 参考訳(メタデータ) (2021-05-06T17:36:55Z) - Spherical Principal Curves [16.095213132052987]
連続曲線へのデータの投影により球面上の主曲線を構成する新しい手法を提案する。
我々のアプローチは、ユークリッド空間データに対する主曲線を提案したHastie and Stuetzle (1989) と同じ直線にある。
論文 参考訳(メタデータ) (2020-03-05T12:50:51Z) - Computationally Tractable Riemannian Manifolds for Graph Embeddings [10.420394952839242]
我々は、ある曲面リーマン空間におけるグラフ埋め込みを学習し、最適化する方法を示す。
我々の結果は、機械学習パイプラインにおける非ユークリッド埋め込みの利点の新たな証拠として役立ちます。
論文 参考訳(メタデータ) (2020-02-20T10:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。