論文の概要: Quantum relaxed row and column iteration methods based on block-encoding
- arxiv url: http://arxiv.org/abs/2206.13730v1
- Date: Tue, 28 Jun 2022 03:33:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-07 13:02:19.181975
- Title: Quantum relaxed row and column iteration methods based on block-encoding
- Title(参考訳): ブロック符号化に基づく量子緩和行と列反復法
- Authors: Xiao-Qi Liu, Jing Wang, Ming Li, Shu-Qian Shen, Weiguo Li, Shao-Ming
Fei
- Abstract要約: 緩和された行と列の反復法に対する量子アルゴリズムを提案する。
列と列の反復法を一般化し、量子コンピュータ上の線形系を解く。
- 参考スコア(独自算出の注目度): 7.489991375172152
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Iteration method is commonly used in solving linear systems of equations. We
present quantum algorithms for the relaxed row and column iteration methods by
constructing unitary matrices in the iterative processes, which generalize row
and column iteration methods to solve linear systems on a quantum computer.
Comparing with the conventional row and column iteration methods, the
convergence accelerates when appropriate parameters are chosen. Once the
quantum states are efficiently prepared, the complexity of our relaxed row and
column methods is improved exponentially and is linear with the number of the
iteration steps. In addition, phase estimations and Hamiltonian simulations are
not required in these algorithms.
- Abstract(参考訳): 反復法は方程式の線形系を解くのによく用いられる。
本研究では, 反復過程におけるユニタリ行列を構築し, 列反復法を一般化し, 線形系を量子コンピュータ上で解くことにより, 緩和列および列反復法の量子アルゴリズムを提案する。
従来の行と列の反復法と比較すると、適切なパラメータを選択すると収束が加速する。
量子状態が効率的に準備されると、緩和された行と列のメソッドの複雑さが指数関数的に改善され、繰り返しステップの数に線形になる。
さらに、これらのアルゴリズムでは位相推定やハミルトニアンシミュレーションは不要である。
関連論文リスト
- Quantum Iterative Methods for Solving Differential Equations with Application to Computational Fluid Dynamics [14.379311972506791]
本稿では、反復過程による解の段階的改善に基づく微分方程式の解法を提案する。
パラダイム流体力学の問題に対するアプローチをベンチマークする。
論文 参考訳(メタデータ) (2024-04-12T17:08:27Z) - An Efficient Quantum Algorithm for Linear System Problem in Tensor Format [4.264200809234798]
本稿では,最近のアディバティック・インスパイアされたQLSAの進歩に基づく量子アルゴリズムを提案する。
実装の全体的な複雑さは、その次元において多対数的であることを厳密に示します。
論文 参考訳(メタデータ) (2024-03-28T20:37:32Z) - Quantum algorithms for linear and non-linear fractional
reaction-diffusion equations [3.409316136755434]
周期境界条件を持つ非線形分数反応拡散方程式の効率的な量子アルゴリズムについて検討する。
本稿では,ハミルトニアンシミュレーション手法と相互作用画像形式を線形に組み合わせた新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-29T04:48:20Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - Hybrid quantum-classical and quantum-inspired classical algorithms for
solving banded circulant linear systems [0.8192907805418583]
帯状循環系に対する量子状態の組み合わせの凸最適化に基づく効率的なアルゴリズムを提案する。
帯状循環行列を巡回置換に分解することにより, 量子状態の組み合わせによる近似解を$K$とする。
我々は,従来のシミュレーションと実際のIBM量子コンピュータ実装を用いて本手法を検証し,熱伝達などの物理問題への適用性を示した。
論文 参考訳(メタデータ) (2023-09-20T16:27:16Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
共分散行列の明示的な構成を避ける新しい推論手法を提案する。
本手法では, 数値線形代数と共役勾配アルゴリズムの対角線推定結果とを結合する。
いくつかのシミュレーションにおいて,本手法は計算時間とメモリにおける既存手法よりも拡張性が高い。
論文 参考訳(メタデータ) (2022-02-25T16:35:26Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
本稿では,「Sender-Receiver」モデルを用いた行列演算のための量子アルゴリズムを提案する。
これらの量子プロトコルは、他の量子スキームのサブルーチンとして使用できる。
論文 参考訳(メタデータ) (2022-02-10T08:12:20Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
我々は、リコメンダシステムと最小二乗回帰のためのクエリをサポートする古典的な(量子でない)動的データ構造を作成する。
これらの問題に対する以前の量子インスパイアされたアルゴリズムは、レバレッジやリッジレベレッジスコアを偽装してサンプリングしていると我々は主張する。
論文 参考訳(メタデータ) (2020-11-09T01:13:07Z) - Combinatorial optimization through variational quantum power method [0.0]
本稿では,電力繰り返しに対する変分量子回路法を提案する。
ユニタリ行列の固有ペアや関連するハミルトン多様体を見つけるのに使うことができる。
回路は、短期量子コンピュータ上で簡単にシミュレートできる。
論文 参考訳(メタデータ) (2020-07-02T10:34:16Z) - Nearly Linear Row Sampling Algorithm for Quantile Regression [54.75919082407094]
データの次元にほぼ線形なサンプル複雑性を持つ量子化損失関数の行サンプリングアルゴリズムを提案する。
行サンプリングアルゴリズムに基づいて、量子レグレッションの最も高速なアルゴリズムと、バランスの取れた有向グラフのグラフスペーシフィケーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-15T13:40:07Z) - Accelerating Feedforward Computation via Parallel Nonlinear Equation
Solving [106.63673243937492]
ニューラルネットワークの評価や自己回帰モデルからのサンプリングなどのフィードフォワード計算は、機械学習においてユビキタスである。
本稿では,非線形方程式の解法としてフィードフォワード計算の課題を定式化し,ジャコビ・ガウス・シーデル固定点法とハイブリッド法を用いて解を求める。
提案手法は, 並列化可能な繰り返し回数の削減(あるいは等値化)により, 元のフィードフォワード計算と全く同じ値が与えられることを保証し, 十分な並列化計算能力を付与する。
論文 参考訳(メタデータ) (2020-02-10T10:11:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。