論文の概要: High Precision Differentiation Techniques for Data-Driven Solution of
Nonlinear PDEs by Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2210.00518v1
- Date: Sun, 2 Oct 2022 13:36:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 18:06:18.284807
- Title: High Precision Differentiation Techniques for Data-Driven Solution of
Nonlinear PDEs by Physics-Informed Neural Networks
- Title(参考訳): 物理インフォームドニューラルネットワークによる非線形PDEのデータ駆動解の高精度微分法
- Authors: Marat S. Mukhametzhanov
- Abstract要約: 本稿では,初期条件が与えられた時間依存部分微分方程式について考察する。
時間変数に対する未知解の新しい微分手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time-dependent Partial Differential Equations with given initial conditions
are considered in this paper. New differentiation techniques of the unknown
solution with respect to time variable are proposed. It is shown that the
proposed techniques allow to generate accurate higher order derivatives
simultaneously for a set of spatial points. The calculated derivatives can then
be used for data-driven solution in different ways. An application for Physics
Informed Neural Networks by the well-known DeepXDE software solution in Python
under Tensorflow background framework has been presented for three real-life
PDEs: Burgers', Allen-Cahn and Schrodinger equations.
- Abstract(参考訳): 本稿では,初期条件が与えられた時間依存部分微分方程式について考察する。
時間変数に対する未知解の新しい微分手法を提案する。
提案手法は,空間点の集合に対して高精度な高次微分を同時に生成できることを示す。
計算された導関数は、異なる方法でデータ駆動ソリューションに使用できる。
テンソルフローバックグラウンドフレームワークのPythonにおけるよく知られたDeepXDEソフトウェアソリューションによる物理インフォームドニューラルネットワークの応用が、Burgers'、Allen-Cahn、Schrodingerの3つの実生活PDEに対して発表された。
関連論文リスト
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Solving partial differential equations with sampled neural networks [1.8590821261905535]
偏微分方程式(PDE)に対する解の近似は計算科学や工学において重要な問題である。
データに依存しない確率分布から、アンザッツネットワークの隠れた重みとバイアスをサンプリングすることで、両課題を進展させる方法について論じる。
論文 参考訳(メタデータ) (2024-05-31T14:24:39Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Multilevel CNNs for Parametric PDEs [0.0]
偏微分方程式に対する多段階解法の概念とニューラルネットワークに基づくディープラーニングを組み合わせる。
より詳細な理論的解析により,提案アーキテクチャは乗算Vサイクルを任意の精度で近似できることを示した。
最先端のディープラーニングベースの解法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-04-01T21:11:05Z) - Random Grid Neural Processes for Parametric Partial Differential
Equations [5.244037702157957]
我々はPDEのための空間確率物理の新しいクラスと深部潜伏モデルについて紹介する。
パラメトリックPDEの前方および逆問題を解場のガウス過程モデルの構築につながる方法で解く。
物理情報モデルにノイズのあるデータを原則的に組み込むことで、データの入手可能な問題に対する予測を改善する方法を示す。
論文 参考訳(メタデータ) (2023-01-26T11:30:56Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Fourier Neural Operator with Learned Deformations for PDEs on General Geometries [75.91055304134258]
我々は任意の測地上でPDEを解決するための新しいフレームワーク、viz.、geo-FNOを提案する。
Geo-FNO は入力(物理)領域を不規則で、一様格子を持つ潜在空間に変形させることを学ぶ。
我々は, 弾性, 塑性, オイラー方程式, ナビエ・ストークス方程式などの多種多様なPDEと, 前方モデリングと逆設計の問題を考察する。
論文 参考訳(メタデータ) (2022-07-11T21:55:47Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Semi-Implicit Neural Solver for Time-dependent Partial Differential
Equations [4.246966726709308]
本稿では,PDEの任意のクラスに対して,データ駆動方式で最適な反復スキームを学習するためのニューラルソルバを提案する。
従来の反復解法に類似したニューラルソルバの正当性と収束性に関する理論的保証を提供する。
論文 参考訳(メタデータ) (2021-09-03T12:03:10Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - STENCIL-NET: Data-driven solution-adaptive discretization of partial
differential equations [2.362412515574206]
STENCIL-NETは、非線形PDEの問題と分解能特異的な局所識別のデータ駆動学習のための人工ニューラルネットワークアーキテクチャである。
ソリューションデータは、離散演算子を学ぶためにネットワークを訓練するのに十分であるため、実際のPDEを知る必要はありません。
一度トレーニングされたSTENCIL-NETモデルは、トレーニング済みのより長い時間、より大きなドメインでのPDEのソリューションを予測するために使用できる。
論文 参考訳(メタデータ) (2021-01-15T15:43:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。