論文の概要: Discover governing differential equations from evolving systems
- arxiv url: http://arxiv.org/abs/2301.07863v1
- Date: Thu, 19 Jan 2023 03:18:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-20 15:44:02.631912
- Title: Discover governing differential equations from evolving systems
- Title(参考訳): 進化系からの制御微分方程式の発見
- Authors: Yuanyuan Li, Kai Wu, Jing Liu
- Abstract要約: 本稿では,データセット全体を処理するのではなく,ストリーミングデータを逐次モデル化することで,サンプルを逐次処理できるオンラインモデリング手法を提案する。
提案手法は, ストリーミングデータから常微分方程式, 偏微分方程式 (PDE) および高次元PDEの発見に有効である。
- 参考スコア(独自算出の注目度): 17.883650663817836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering the governing equations of evolving systems from available
observations is essential and challenging. However, current methods does not
capture the situation that underlying system dynamics can be changed.Evolving
systems are changing over time, which invariably changes with system status.
Thus, finding the exact change points is critical. We propose an online
modeling method capable of handling samples one by one sequentially by modeling
streaming data instead of processing the entire dataset. The proposed method
performs well in discovering ordinary differential equations, partial
differential equations (PDEs), and high-dimensional PDEs from streaming data.
The measurement generated from a changed system is distributed dissimilarly to
before; hence, the difference can be identified by the proposed method. Our
proposal performs well in identifying the change points and discovering
governing differential equations in two evolving systems.
- Abstract(参考訳): 利用可能な観測から進化系の支配方程式を発見することは不可欠で難しい。
しかし、現在の手法では、システムの力学が変化しうる状況は捉えられず、進化するシステムは時間とともに変化し、システム状態は必然的に変化する。
したがって、正確な変化点を見つけることが重要である。
本稿では,データセット全体を処理するのではなく,ストリーミングデータをモデリングすることで,各サンプルを順次処理できるオンラインモデリング手法を提案する。
提案手法は, ストリーミングデータから常微分方程式, 偏微分方程式 (PDE) および高次元PDEの発見に有効である。
変更したシステムから生成された測定は前と異なって分布するので,提案手法により差を識別できる。
本提案は, 2つの発展系における変化点の同定と微分方程式の発見に有効である。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Governing equation discovery of a complex system from snapshots [11.803443731299677]
スナップショットからの微分方程式のスパース同定 (Sparse Identification of Differential Equations from Snapshots (SpIDES)) と呼ばれるデータ駆動型シミュレーションフリーフレームワークを導入する。
SpIDESは、高度な機械学習技術を利用してスナップショットから複雑なシステムの制御方程式を発見する。
2つの潜在的な井戸に閉じ込められた過剰損傷ランゲヴィン系の支配方程式を同定し,SpIDESの有効性とロバスト性を検証した。
論文 参考訳(メタデータ) (2024-10-22T04:55:12Z) - PI-VEGAN: Physics Informed Variational Embedding Generative Adversarial
Networks for Stochastic Differential Equations [14.044012646069552]
本稿では,新しい物理インフォームドニューラルネットワーク(PI-VEGAN)について紹介する。
PI-VEGANは微分方程式の前方、逆、混合問題に効果的に取り組む。
我々は,システムパラメータと解の同時計算を必要とする,前方・逆・混合問題に対するPI-VEGANの有効性を評価する。
論文 参考訳(メタデータ) (2023-07-21T01:18:02Z) - System Identification with Copula Entropy [2.3980064191633232]
コプラエントロピー(CE)を用いた力学系の微分方程式の同定法を提案する。
この問題は変数選択問題と見なされ、従来提案されていた変数選択のためのCE法で解決された。
論文 参考訳(メタデータ) (2023-04-23T09:56:33Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Discovering ordinary differential equations that govern time-series [65.07437364102931]
本研究では, 1つの観測解の時系列データから, スカラー自律常微分方程式(ODE)を記号形式で復元するトランスフォーマーに基づくシーケンス・ツー・シーケンス・モデルを提案する。
提案手法は, 1回に一度, ODE の大規模な事前訓練を行った後, モデルのいくつかの前方通過において, 新たに観測された解の法則を推測することができる。
論文 参考訳(メタデータ) (2022-11-05T07:07:58Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
D-CIPHERは人工物の測定に頑健であり、微分方程式の新しい、非常に一般的なクラスを発見できる。
さらに,D-CIPHERを効率的に探索するための新しい最適化手法であるCoLLieを設計する。
論文 参考訳(メタデータ) (2022-06-21T17:59:20Z) - PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic
differential equations [2.741266294612776]
我々は、物理学インフォームド・ニューラルネットワーク(PI-VAE)と呼ばれる新しいタイプの物理インフォームド・ニューラルネットワークを提案する。
PI-VAEは、システム変数とパラメータのサンプルを生成する変分オートエンコーダ(VAE)で構成されている。
提案手法の精度と効率を,物理インフォームド生成対向ネットワーク (PI-WGAN) と比較して数値的に検証した。
論文 参考訳(メタデータ) (2022-03-21T21:51:19Z) - Identification of Dynamical Systems using Symbolic Regression [0.0]
本稿では,観測データから動的システムのモデルを特定する手法について述べる。
新しくなったのは、ODEパラメータの勾配に基づく最適化のステップを追加することです。
パラメータの勾配に基づく最適化はモデルの予測精度を向上させる。
論文 参考訳(メタデータ) (2021-07-06T11:41:10Z) - Multi-objective discovery of PDE systems using evolutionary approach [77.34726150561087]
本稿では,多目的共進化アルゴリズムについて述べる。
システム内の単一の方程式とシステム自体が同時に進化し、システムを得る。
単一のベクトル方程式とは対照的に、コンポーネント・ワイド・システムは専門家の解釈により適しており、従って応用にも適している。
論文 参考訳(メタデータ) (2021-03-11T15:37:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。