論文の概要: Physics-constrained neural differential equations for learning
multi-ionic transport
- arxiv url: http://arxiv.org/abs/2303.04594v1
- Date: Tue, 7 Mar 2023 17:18:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-09 13:57:03.745297
- Title: Physics-constrained neural differential equations for learning
multi-ionic transport
- Title(参考訳): 多イオン輸送学習のための物理制約型ニューラル微分方程式
- Authors: Danyal Rehman and John H. Lienhard
- Abstract要約: 我々は,ポリアミドナノ孔間のイオン輸送挙動を学習する物理インフォームド深層学習モデルを開発した。
ニューラル・ディファレンシャル・方程式を古典的閉包モデルと組み合わせて、ニューラル・フレームワークに直接帰納バイアスとして利用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Continuum models for ion transport through polyamide nanopores require
solving partial differential equations (PDEs) through complex pore geometries.
Resolving spatiotemporal features at this length and time-scale can make
solving these equations computationally intractable. In addition, mechanistic
models frequently require functional relationships between ion interaction
parameters under nano-confinement, which are often too challenging to measure
experimentally or know a priori. In this work, we develop the first
physics-informed deep learning model to learn ion transport behaviour across
polyamide nanopores. The proposed architecture leverages neural differential
equations in conjunction with classical closure models as inductive biases
directly encoded into the neural framework. The neural differential equations
are pre-trained on simulated data from continuum models and fine-tuned on
independent experimental data to learn ion rejection behaviour. Gaussian noise
augmentations from experimental uncertainty estimates are also introduced into
the measured data to improve model generalization. Our approach is compared to
other physics-informed deep learning models and shows strong agreement with
experimental measurements across all studied datasets.
- Abstract(参考訳): ポリアミドナノ孔を経由するイオン輸送の連続モデルは、複雑な細孔幾何学を通して偏微分方程式(PDE)を解く必要がある。
この長さと時間スケールで時空間的特徴を解くことで、これらの方程式を計算的に解くことができる。
さらに、メカニスティックモデルは、しばしばナノコンフィニメントの下でのイオン相互作用パラメータ間の機能的関係を必要とするが、実験的な測定や事前の知識が難しいことが多い。
本研究では,ポリアミドナノ孔間のイオン輸送挙動を学習する物理インフォームド深層学習モデルを開発した。
提案したアーキテクチャは、古典的クロージャモデルと組み合わせて、ニューラルフレームワークに直接符号化された帰納的バイアスとして神経微分方程式を利用する。
ニューラル微分方程式は連続体モデルからのシミュレーションデータに基づいて事前訓練され、独立実験データに基づいて微調整され、イオンの拒絶挙動を学習する。
実験不確実性推定によるガウス雑音の増大もモデル一般化を改善するために測定データに導入される。
本手法は他の物理モデルと比較し,すべてのデータセットで実験値と強い一致を示した。
関連論文リスト
- Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Learning Deep Implicit Fourier Neural Operators (IFNOs) with
Applications to Heterogeneous Material Modeling [3.9181541460605116]
本稿では,従来のモデルを用いることなく,データ駆動モデルを用いて素材の応答を予測することを提案する。
材料応答は、負荷条件と結果の変位および/または損傷場の暗黙のマッピングを学習することによってモデル化される。
本稿では,超弾性材料,異方性材料,脆性材料など,いくつかの例について提案手法の性能を実証する。
論文 参考訳(メタデータ) (2022-03-15T19:08:13Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
本研究は、極限サイクルを持つ物理非線形力学系に対する普遍微分方程式(UDE)モデルの訓練に焦点をあてる。
数値シミュレーションによりトレーニングデータを生成する例を考察するとともに,提案するモデリング概念を物理実験に適用する。
ニューラルネットワークとガウス過程の両方を、力学モデルと共に普遍近似器として使用し、UDEモデリングアプローチの正確性と堅牢性を批判的に評価する。
論文 参考訳(メタデータ) (2021-10-22T15:43:03Z) - Neural Stochastic Partial Differential Equations [1.2183405753834562]
物理に着想を得たニューラルアーキテクチャの2つの重要なクラスの拡張を提供するニューラルSPDEモデルを導入する。
一方、一般的な神経-通常、制御され、粗い-微分方程式モデルをすべて拡張し、入ってくる情報を処理することができる。
一方、関数空間間のマッピングをモデル化するニューラルネットワークの最近の一般化であるNeural Operatorsを拡張して、複雑なSPDEソリューション演算子を学習することができる。
論文 参考訳(メタデータ) (2021-10-19T20:35:37Z) - Automatically Polyconvex Strain Energy Functions using Neural Ordinary
Differential Equations [0.0]
深層ニューラルネットワークは、フォーム近似の制約なしに複雑な物質を学習することができる。
N-ODE材料モデルは、クローズドフォーム材料モデルから生成された合成データをキャプチャすることができる。
フレームワークは、大きな種類の材料をモデル化するのに使用できます。
論文 参考訳(メタデータ) (2021-10-03T13:11:43Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。