論文の概要: Learning High-Dimensional Nonparametric Differential Equations via
Multivariate Occupation Kernel Functions
- arxiv url: http://arxiv.org/abs/2306.10189v1
- Date: Fri, 16 Jun 2023 21:49:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 23:44:16.989988
- Title: Learning High-Dimensional Nonparametric Differential Equations via
Multivariate Occupation Kernel Functions
- Title(参考訳): 多変量職業核関数による高次元非パラメトリック微分方程式の学習
- Authors: Victor Rielly, Kamel Lahouel, Ethan Lew, Michael Wells, Vicky Haney,
Bruno Jedynak
- Abstract要約: 通常の微分方程式の非パラメトリック系を学ぶには、$d$変数の$d$関数を学ぶ必要がある。
明示的な定式化は、スパーシティや対称性といったシステム特性に関する追加の知識が得られない限り、$d$で2次的にスケールする。
本稿では,ベクトル値の再現Kernel Hilbert Spacesによる暗黙の定式化を用いた線形学習手法を提案する。
- 参考スコア(独自算出の注目度): 0.31317409221921133
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Learning a nonparametric system of ordinary differential equations (ODEs)
from $n$ trajectory snapshots in a $d$-dimensional state space requires
learning $d$ functions of $d$ variables. Explicit formulations scale
quadratically in $d$ unless additional knowledge about system properties, such
as sparsity and symmetries, is available. In this work, we propose a linear
approach to learning using the implicit formulation provided by vector-valued
Reproducing Kernel Hilbert Spaces. By rewriting the ODEs in a weaker integral
form, which we subsequently minimize, we derive our learning algorithm. The
minimization problem's solution for the vector field relies on multivariate
occupation kernel functions associated with the solution trajectories. We
validate our approach through experiments on highly nonlinear simulated and
real data, where $d$ may exceed 100. We further demonstrate the versatility of
the proposed method by learning a nonparametric first order quasilinear partial
differential equation.
- Abstract(参考訳): 通常の微分方程式(odes)の非パラメトリック系を、d$-次元状態空間でn$の軌跡スナップショットから学ぶには、$d$変数の$d$関数を学ぶ必要がある。
明示的な定式化は、スパーシティや対称性などのシステム特性に関する追加の知識が得られない限り、$d$で2倍スケールする。
本研究では,ベクトル値の再現ケルネルヒルベルト空間による暗黙の定式化を用いた線形学習手法を提案する。
odeをより弱い積分形式に書き直すことで、それを最小化することで、学習アルゴリズムを導出します。
ベクトル場に対する最小化問題の解は、解の軌跡に関連する多変量占有核関数に依存する。
我々は、高非線形シミュレーションおよび実データの実験により、d$が100を超える場合のアプローチを検証する。
さらに,非パラメトリックな1次準線形偏微分方程式を学習することにより,提案手法の汎用性を示す。
関連論文リスト
- A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations [0.6040014326756179]
本稿では,高次元非線形逆微分方程式を解くための新しい逆微分深層学習アルゴリズムを提案する。
ディープニューラルネットワーク(DNN)モデルは、入力やラベルだけでなく、対応するラベルの差分に基づいて訓練される。
論文 参考訳(メタデータ) (2024-04-12T13:05:35Z) - Physics-Informed Quantum Machine Learning: Solving nonlinear
differential equations in latent spaces without costly grid evaluations [21.24186888129542]
非線形および多次元微分方程式を解く物理インフォームド量子アルゴリズムを提案する。
DE項の表現である状態間の重なりを測定することにより、格子点上の独立な逐次関数評価を必要としない損失を構築する。
損失が変動的に訓練されると、我々のアプローチは微分可能な量子回路プロトコルと関連付けられる。
論文 参考訳(メタデータ) (2023-08-03T15:38:31Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
我々は、制御に線形に依存する$dot x = sum_i=1lF_i(x)u_i$という形の制御系を考える。
対応するフローを用いて、コンパクトな点のアンサンブル上の微分同相写像の作用を近似する。
論文 参考訳(メタデータ) (2021-10-24T08:57:46Z) - Learning Linearized Assignment Flows for Image Labeling [70.540936204654]
画像ラベリングのための線形化代入フローの最適パラメータを推定するための新しいアルゴリズムを提案する。
この式をKrylov部分空間と低ランク近似を用いて効率的に評価する方法を示す。
論文 参考訳(メタデータ) (2021-08-02T13:38:09Z) - Multiscale regression on unknown manifolds [13.752772802705978]
マルチスケールで$mathcalM$に低次元座標を構築し、ローカルフィッティングによるマルチスケール回帰を行います。
本手法の一般化誤差を,事前のリッチクラス上で高い確率で有限サンプル境界を証明することによって解析する。
私たちのアルゴリズムは、サンプルサイズの準線形複雑性を持ち、定数は$D$で、指数は$d$です。
論文 参考訳(メタデータ) (2021-01-13T15:14:31Z) - Deep neural network for solving differential equations motivated by
Legendre-Galerkin approximation [16.64525769134209]
線形微分方程式と非線形微分方程式の両方における様々なニューラルネットワークアーキテクチャの性能と精度について検討する。
我々は、微分方程式の解を予測するために、新しいレジェンダ-ガレルキンディープニューラルネットワーク(LGNet)アルゴリズムを実装した。
論文 参考訳(メタデータ) (2020-10-24T20:25:09Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Large-time asymptotics in deep learning [0.0]
トレーニングにおける最終時間の$T$(対応するResNetの深さを示す可能性がある)の影響について検討する。
古典的な$L2$-正規化経験的リスク最小化問題に対して、トレーニングエラーが$mathcalOleft(frac1Tright)$のほとんどであることを示す。
$ellp$-距離損失の設定において、トレーニングエラーと最適パラメータの両方が$mathcalOleft(e-mu)の順序のほとんどであることを示す。
論文 参考訳(メタデータ) (2020-08-06T07:33:17Z) - Piecewise Linear Regression via a Difference of Convex Functions [50.89452535187813]
本稿では,データに対する凸関数(DC関数)の差を利用した線形回帰手法を提案する。
実際に実装可能であることを示すとともに,実世界のデータセット上で既存の回帰/分類手法に匹敵する性能を有することを実証的に検証した。
論文 参考訳(メタデータ) (2020-07-05T18:58:47Z) - Learning nonlinear dynamical systems from a single trajectory [102.60042167341956]
我々は、$x_t+1=sigma(Thetastarx_t)+varepsilon_t$という形の非線形力学系を学ぶアルゴリズムを導入する。
最適なサンプル複雑性と線形ランニング時間を持つ単一軌道から重み行列$Thetastar$を復元するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-30T10:42:48Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
非滑らかで非滑らかな関数の定常点を見つけるための最初の非漸近解析を提供する。
特に、アダマール半微分可能函数(おそらく非滑らか関数の最大のクラス)について研究する。
論文 参考訳(メタデータ) (2020-02-10T23:23:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。