論文の概要: Separable Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2306.15969v1
- Date: Wed, 28 Jun 2023 07:11:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-29 15:27:21.364961
- Title: Separable Physics-Informed Neural Networks
- Title(参考訳): 分離可能な物理インフォームニューラルネットワーク
- Authors: Junwoo Cho, Seungtae Nam, Hyunmo Yang, Seok-Bae Yun, Youngjoon Hong,
Eunbyung Park
- Abstract要約: PINNのためのネットワークアーキテクチャとトレーニングアルゴリズムを提案する。
SPINNは、多次元PDEにおけるネットワーク伝播数を著しく削減するために、軸単位で動作している。
そこで, SPINN は, 2+1-d Navier-Stokes 方程式を, より高速に解けることを示す。
- 参考スコア(独自算出の注目度): 3.642046920674311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) have recently emerged as promising
data-driven PDE solvers showing encouraging results on various PDEs. However,
there is a fundamental limitation of training PINNs to solve multi-dimensional
PDEs and approximate highly complex solution functions. The number of training
points (collocation points) required on these challenging PDEs grows
substantially, but it is severely limited due to the expensive computational
costs and heavy memory overhead. To overcome this issue, we propose a network
architecture and training algorithm for PINNs. The proposed method, separable
PINN (SPINN), operates on a per-axis basis to significantly reduce the number
of network propagations in multi-dimensional PDEs unlike point-wise processing
in conventional PINNs. We also propose using forward-mode automatic
differentiation to reduce the computational cost of computing PDE residuals,
enabling a large number of collocation points (>10^7) on a single commodity
GPU. The experimental results show drastically reduced computational costs (62x
in wall-clock time, 1,394x in FLOPs given the same number of collocation
points) in multi-dimensional PDEs while achieving better accuracy. Furthermore,
we present that SPINN can solve a chaotic (2+1)-d Navier-Stokes equation
significantly faster than the best-performing prior method (9 minutes vs 10
hours in a single GPU), maintaining accuracy. Finally, we showcase that SPINN
can accurately obtain the solution of a highly nonlinear and multi-dimensional
PDE, a (3+1)-d Navier-Stokes equation.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、様々なPDEに対して有望なデータ駆動型PDE解法として最近登場した。
しかし、多次元pdesや近似高複素解関数を解くための訓練ピンの基本的な制限がある。
これらの困難なpdesに必要なトレーニングポイント(ロケーションポイント)の数は大幅に増加するが、高価な計算コストとメモリのオーバーヘッドのため、かなり制限されている。
この問題を克服するため,我々はpinnのネットワークアーキテクチャとトレーニングアルゴリズムを提案する。
提案手法である分離可能なPINN(SPINN)は,従来のPINNのポイントワイド処理とは異なり,多次元PDEにおけるネットワーク伝搬数を著しく削減する。
また,PDE残差計算の計算コストを削減し,単一のコモディティGPU上で多数のコロケーションポイント(>10^7)を実現するために,前方モード自動微分法を提案する。
実験の結果,多次元PDEにおける計算コスト(壁面時間62倍,FLOPでは1,394倍)を大幅に削減し,精度が向上した。
さらに,SPINN は,2+1-d Navier-Stokes 方程式を最良性能の先行手法 (1GPUでは9分対10時間) よりもはるかに高速に解き,精度を維持できることを示した。
最後に、SPINNは高非線形多次元PDE(3+1-d Navier-Stokes方程式)の解を正確に得ることを示す。
関連論文リスト
- Tackling the Curse of Dimensionality with Physics-Informed Neural Networks [24.86574584293979]
我々は、任意の高次元PDEを解決するために、物理インフォームドニューラルネットワーク(PINN)をスケールアップする新しい方法を開発した。
本研究では,提案手法が多くの高次元PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2023-07-23T12:18:12Z) - iPINNs: Incremental learning for Physics-informed neural networks [66.4795381419701]
物理インフォームドニューラルネットワーク(PINN)は、最近偏微分方程式(PDE)を解く強力なツールとなっている。
本稿では,新しいタスクのパラメータを追加せずに連続的に複数のタスクを学習できるインクリメンタルPINNを提案する。
提案手法は,PDEごとに個別のサブネットワークを作成し,従来のサブネットワークと重なり合うようにすることで,最も単純なPDEから複数のPDEを学習する。
論文 参考訳(メタデータ) (2023-04-10T20:19:20Z) - A physics-informed neural network framework for modeling obstacle-related equations [3.687313790402688]
物理インフォームドニューラルネットワーク(PINN)は、スパースデータとノイズデータに基づいて偏微分方程式を解く魅力的なツールである。
ここでは、PINNを拡張して障害物関連PDEを解くことで、計算上の大きな課題を提示します。
提案したPINNの性能は、正規および不規則な障害物を受ける線形および非線形PDEの複数のシナリオで実証される。
論文 参考訳(メタデータ) (2023-04-07T09:22:28Z) - Separable PINN: Mitigating the Curse of Dimensionality in
Physics-Informed Neural Networks [6.439575695132489]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆問題の両方に新しいデータ駆動型PDEソルバとして登場した。
自動微分(AD)の計算は、PINNのトレーニングにおいて前方モードADを活用することで大幅に削減できることを示す。
我々は、より効率的な計算のために、前進モードADを容易に行える分離可能なPINN(SPINN)と呼ばれるネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-11-16T08:46:52Z) - MAgNet: Mesh Agnostic Neural PDE Solver [68.8204255655161]
気候予測は、流体シミュレーションにおける全ての乱流スケールを解決するために、微細な時間分解能を必要とする。
現在の数値モデル解法 PDEs on grids that too coarse (3km~200km on each side)
本研究では,空間的位置問合せが与えられたPDEの空間的連続解を予測する新しいアーキテクチャを設計する。
論文 参考訳(メタデータ) (2022-10-11T14:52:20Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
我々は,PDEのリー対称性によって誘導される不変表面条件をPINNの損失関数に組み込む,新しい対称性を持つ物理情報ニューラルネットワーク(SPINN)を提案する。
SPINNは、トレーニングポイントが少なく、ニューラルネットワークのよりシンプルなアーキテクチャで、PINNよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-06-19T00:44:22Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Learning time-dependent PDE solver using Message Passing Graph Neural
Networks [0.0]
本稿では,メッセージパッシングモデルを用いた学習を通して,効率的なPDE解法を見つけるためのグラフニューラルネットワーク手法を提案する。
グラフを用いて、非構造化メッシュ上でPDEデータを表現し、メッセージパッシンググラフニューラルネットワーク(MPGNN)が支配方程式をパラメータ化できることを示す。
繰り返しグラフニューラルネットワークは,PDEに対する解の時間列を見つけることができることを示す。
論文 参考訳(メタデータ) (2022-04-15T21:10:32Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。