論文の概要: Preparation of matrix product states with log-depth quantum circuits
- arxiv url: http://arxiv.org/abs/2307.01696v1
- Date: Tue, 4 Jul 2023 13:05:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 17:11:16.375710
- Title: Preparation of matrix product states with log-depth quantum circuits
- Title(参考訳): log-depth量子回路を用いた行列積状態の合成
- Authors: Daniel Malz, Georgios Styliaris, Zhi-Yuan Wei, J. Ignacio Cirac
- Abstract要約: 局所ゲートの量子回路による行列積状態(MPS)の調製について検討する。
我々はまず、$N$サイトの翻訳不変正規MPSを忠実に作成するには、回路深さ$T=Omega(log N)$が必要であることを証明した。
次に、正規化群変換に基づくアルゴリズムを導入し、誤差$epsilon$ in depth $T=O(log (N/epsilon))$で正規MPSを作成する。
- 参考スコア(独自算出の注目度): 0.688204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider preparation of matrix product states (MPS) via quantum circuits
of local gates. We first prove that faithfully preparing translation-invariant
normal MPS of $N$ sites requires a circuit depth $T=\Omega(\log N)$. We then
introduce an algorithm based on the renormalization-group transformation to
prepare normal MPS with an error $\epsilon$ in depth $T=O(\log (N/\epsilon))$,
which is optimal. We also show that measurement and feedback leads to an
exponential speed-up of the algorithm, to $T=O(\log\log (N/\epsilon))$.
Measurements also allow one to prepare arbitrary translation-invariant MPS,
including long-range non-normal ones, in the same depth. Finally, the algorithm
naturally extends to inhomogeneous MPS.
- Abstract(参考訳): 局所ゲートの量子回路による行列積状態(MPS)の調製を検討する。
まず、n$サイトの翻訳不変正規mpを忠実に準備するには回路深度$t=\omega(\log n)$が必要であることを証明します。
次に、正規化群変換に基づくアルゴリズムを導入し、誤差$\epsilon$ in depth $T=O(\log (N/\epsilon))$で正規MPSを作成する。
また、測定とフィードバックがアルゴリズムの指数的な高速化につながり、$T=O(\log\log (N/\epsilon))$であることを示す。
測定により、任意の翻訳不変MPS、例えば長距離非正規MPSを同じ深さで作成することもできる。
最後に、アルゴリズムは自然に不均一MPSにまで拡張する。
関連論文リスト
- The Cost of Entanglement Renormalization on a Fault-Tolerant Quantum Computer [0.042855555838080824]
我々は、フォールトトレラント量子コンピュータ上で、ディープ・エンタングルメント・リノーマライゼーション・アンサッツを使用する可能性の詳細な推定を行う。
比較的大きなシステムサイズを推定するために、量子ビットの数が最大で1桁減少するのを観測する。
epsilon$, $mathcalOleft(fraclog Nepsilon right)$$T$ gates and $mathcalOleft(log Nright)$ qubits suffice のサイトあたりのエネルギーを推定する。
論文 参考訳(メタデータ) (2024-04-15T18:00:17Z) - On sampling determinantal and Pfaffian point processes on a quantum
computer [49.1574468325115]
DPPは1970年代の量子光学のモデルとしてマッキによって導入された。
ほとんどのアプリケーションはDPPからのサンプリングを必要としており、その量子起源を考えると、古典的なコンピュータでDPPをサンプリングするのは古典的なものよりも簡単かどうか疑問に思うのが自然である。
バニラサンプリングは、各コスト$mathcalO(N3)$と$mathcalO(Nr2)$の2つのステップから構成される。
論文 参考訳(メタデータ) (2023-05-25T08:43:11Z) - Quantum algorithm for position weight matrix matching [0.9404723842159504]
バイオインフォマティクス, 位置重み行列(PWM)マッチングにおける問題に対する2つの量子アルゴリズムを提案する。
提案した2つのアルゴリズム、ナイーブ法とモンテカルロ法は、生物学的配列のエントリへの分子アクセスを考慮し、一致したセグメントを出力する。
論文 参考訳(メタデータ) (2023-03-07T00:34:16Z) - Spacetime-Efficient Low-Depth Quantum State Preparation with
Applications [93.56766264306764]
任意の量子状態を作成するための新しい決定論的手法は、以前の方法よりも少ない量子資源を必要とすることを示す。
我々は、量子機械学習、ハミルトンシミュレーション、方程式の線形系を解くことなど、この能力が役立ついくつかのアプリケーションを強調した。
論文 参考訳(メタデータ) (2023-03-03T18:23:20Z) - Approximate Quantum Compiling for Quantum Simulation: A Tensor Network based approach [1.237454174824584]
行列生成状態(MPS)から短深さ量子回路を生成する新しいアルゴリズムであるAQCtensorを導入する。
我々のアプローチは、量子多体ハミルトニアンの時間進化から生じる量子状態の準備に特化している。
100量子ビットのシミュレーション問題に対して、AQCtensorは、結果の最適化回路の深さの少なくとも1桁の縮小を実現していることを示す。
論文 参考訳(メタデータ) (2023-01-20T14:40:29Z) - Quantum Algorithms for Sampling Log-Concave Distributions and Estimating
Normalizing Constants [8.453228628258778]
我々は,対数凹分布をサンプリングし,正規化定数を推定するための量子アルゴリズムを開発した。
我々はモンテカルロ法と量子ウォークの量子アナログを利用する。
また、正規化定数を推定するための1/epsilon1-o(1)$量子下界も証明する。
論文 参考訳(メタデータ) (2022-10-12T19:10:43Z) - Scalable MCMC Sampling for Nonsymmetric Determinantal Point Processes [45.40646054226403]
決定点プロセス(DPP)は、$n$アイテムの全てのサブセットに確率を割り当てる。
最近の研究は、NDPPに対する近似連鎖モンテカルロサンプリングアルゴリズムを、サイズ-k$サブセットに限定して研究している。
低ランクカーネルを持つ$k$-NDPPに対するスケーラブルなMCMCサンプリングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-07-01T15:22:12Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
回路レベルの実装とリソース推定を行い、古典データの高密度な$Ntimes N$行列をブロックエンコードして$epsilon$を精度良くすることができる。
異なるアプローチ間のリソーストレードオフを調査し、量子ランダムアクセスメモリ(QRAM)の2つの異なるモデルの実装を検討する。
我々の結果は、単純なクエリの複雑さを超えて、大量の古典的データが量子アルゴリズムにアクセスできると仮定された場合のリソースコストの明確な図を提供する。
論文 参考訳(メタデータ) (2022-06-07T18:00:01Z) - K-sparse Pure State Tomography with Phase Estimation [1.2183405753834557]
純状態の再構成のための量子状態トモグラフィ(QST)は、キュービット数で資源と測定を指数的に増加させる必要がある。
特定の測定セットにおける$n$bitsの異なる計算基底状態の重ね合わせからなる純状態のQST再構成を示す。
論文 参考訳(メタデータ) (2021-11-08T09:43:12Z) - Higher-order Derivatives of Weighted Finite-state Machines [68.43084108204741]
本研究では、重み付き有限状態機械の正規化定数に関する高次微分の計算について検討する。
文献に記載されていないすべての順序の導関数を評価するための一般アルゴリズムを提案する。
我々のアルゴリズムは以前のアルゴリズムよりもはるかに高速である。
論文 参考訳(メタデータ) (2021-06-01T19:51:55Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
本稿では、生成した状態の古典的ベクトル形式を生成する効率的な読み出しプロトコルを提案する。
我々のプロトコルは、出力状態が入力行列の行空間にある場合に適合する。
我々の技術ツールの1つは、Gram-Schmidt正則手順を実行するための効率的な量子アルゴリズムである。
論文 参考訳(メタデータ) (2020-04-14T11:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。