論文の概要: VENI, VINDy, VICI: a variational reduced-order modeling framework with uncertainty quantification
- arxiv url: http://arxiv.org/abs/2405.20905v1
- Date: Fri, 31 May 2024 15:16:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 13:58:40.618403
- Title: VENI, VINDy, VICI: a variational reduced-order modeling framework with uncertainty quantification
- Title(参考訳): VENI, VINDy, VICI:不確実性定量化を伴う変動最小順序モデリングフレームワーク
- Authors: Paolo Conti, Jonas Kneifl, Andrea Manzoni, Attilio Frangi, Jörg Fehr, Steven L. Brunton, J. Nathan Kutz,
- Abstract要約: 我々は、低次モデル(ROM)を構築するためのデータ駆動型非侵入型フレームワークを提案する。
詳細は、縮小座標の分布を特定するための変分SINIで構成されている。
トレーニングされたオフラインで、特定されたモデルは、新しいパラメータインスタンスと、対応するフルタイムソリューションを計算するための新しい初期条件のためにクエリすることができる。
- 参考スコア(独自算出の注目度): 4.804365706049767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The simulation of many complex phenomena in engineering and science requires solving expensive, high-dimensional systems of partial differential equations (PDEs). To circumvent this, reduced-order models (ROMs) have been developed to speed up computations. However, when governing equations are unknown or partially known, typically ROMs lack interpretability and reliability of the predicted solutions. In this work we present a data-driven, non-intrusive framework for building ROMs where the latent variables and dynamics are identified in an interpretable manner and uncertainty is quantified. Starting from a limited amount of high-dimensional, noisy data the proposed framework constructs an efficient ROM by leveraging variational autoencoders for dimensionality reduction along with a newly introduced, variational version of sparse identification of nonlinear dynamics (SINDy), which we refer to as Variational Identification of Nonlinear Dynamics (VINDy). In detail, the method consists of Variational Encoding of Noisy Inputs (VENI) to identify the distribution of reduced coordinates. Simultaneously, we learn the distribution of the coefficients of a pre-determined set of candidate functions by VINDy. Once trained offline, the identified model can be queried for new parameter instances and new initial conditions to compute the corresponding full-time solutions. The probabilistic setup enables uncertainty quantification as the online testing consists of Variational Inference naturally providing Certainty Intervals (VICI). In this work we showcase the effectiveness of the newly proposed VINDy method in identifying interpretable and accurate dynamical system for the R\"ossler system with different noise intensities and sources. Then the performance of the overall method - named VENI, VINDy, VICI - is tested on PDE benchmarks including structural mechanics and fluid dynamics.
- Abstract(参考訳): 工学と科学における多くの複雑な現象のシミュレーションは、高価な偏微分方程式(PDE)の高次元システムを解く必要がある。
これを回避するために、計算を高速化するために低次モデル(ROM)が開発された。
しかし、支配方程式が未知あるいは部分的に知られている場合、一般的にROMは予測された解の解釈可能性や信頼性を欠いている。
本研究では、ROMを構築するためのデータ駆動型非侵襲的フレームワークについて、潜在変数と動的変数を解釈可能な方法で同定し、不確実性を定量化する。
提案手法は,高次元高雑音データから,非線形ダイナミクスのスパース同定(SINDy)を新たに導入し,変分オートエンコーダを用いて効率的なROMを構築する。
より詳しくは、縮小座標の分布を特定するために、雑音入力の変分符号化(VENI)で構成される。
同時に、VINDyにより事前決定された候補関数の係数の分布を学習する。
トレーニングされたオフラインで、特定されたモデルは、新しいパラメータインスタンスと、対応するフルタイムソリューションを計算するための新しい初期条件のためにクエリすることができる。
確率的設定は、オンラインテストが自然に不確実区間(VICI)を提供する変分推論からなるため、不確実な定量化を可能にする。
本研究では,ノイズ強度と音源の異なるR\osslerシステムにおいて,解釈可能かつ正確な力学系を同定するための新しいVINDy法の有効性を示す。
次に、構造力学や流体力学を含むPDEベンチマークにおいて、VENI、VINDy、VICIと呼ばれる全体的な手法の性能を検証した。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
非線形・雑音・非自律力学系に対する擬似常微分方程式(ODE)モデルを求めることに集中する。
提案手法は,SINDyとSINDy(非線形力学のスパース同定)を結合し,スパースODEの時間変化係数をモデル化する。
論文 参考訳(メタデータ) (2024-10-02T23:00:00Z) - Probabilistic Numeric SMC Sampling for Bayesian Nonlinear System Identification in Continuous Time [0.0]
工学において、ノイズによって汚染されたデータから非線形力学系を正確にモデル化することは必須かつ複雑である。
連続時間常微分方程式(ODE)の統合は、理論モデルと離散サンプリングデータとの整合に不可欠である。
本稿では,非線形力学系の結合パラメータ-状態同定におけるODEの確率論的数値解法の適用例を示す。
論文 参考訳(メタデータ) (2024-04-19T14:52:14Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
本研究は,ROM構築と動的識別の低減を組み合わせたデータ駆動型非侵入型フレームワークを提案する。
提案手法は、非線形力学(SINDy)のパラメトリックスパース同定によるオートエンコーダニューラルネットワークを利用して、低次元力学モデルを構築する。
これらは、システムパラメータの関数として周期的定常応答の進化を追跡し、過渡位相の計算を避け、不安定性と分岐を検出することを目的としている。
論文 参考訳(メタデータ) (2022-11-13T01:57:18Z) - PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic
differential equations [2.741266294612776]
我々は、物理学インフォームド・ニューラルネットワーク(PI-VAE)と呼ばれる新しいタイプの物理インフォームド・ニューラルネットワークを提案する。
PI-VAEは、システム変数とパラメータのサンプルを生成する変分オートエンコーダ(VAE)で構成されている。
提案手法の精度と効率を,物理インフォームド生成対向ネットワーク (PI-WGAN) と比較して数値的に検証した。
論文 参考訳(メタデータ) (2022-03-21T21:51:19Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - Weak SINDy For Partial Differential Equations [0.0]
我々はWeak SINDy(WSINDy)フレームワークを偏微分方程式(PDE)の設定にまで拡張する。
弱い形状による点微分近似の除去は、ノイズフリーデータからモデル係数の効率的な機械的精度回復を可能にする。
我々は、いくつかの挑戦的なPDEに対して、WSINDyの堅牢性、速度、精度を実証する。
論文 参考訳(メタデータ) (2020-07-06T16:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。