論文の概要: A class of 2 X 2 correlated random-matrix models with Brody spacing distribution
- arxiv url: http://arxiv.org/abs/2308.01514v2
- Date: Fri, 28 Jun 2024 19:26:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 18:00:11.291304
- Title: A class of 2 X 2 correlated random-matrix models with Brody spacing distribution
- Title(参考訳): Brody間隔分布を持つ2 X 2相関ランダム行列モデルのクラス
- Authors: Jamal Sakhr,
- Abstract要約: ブロディ分布を固有値間隔分布とする 2 X 2 乱行列モデルのクラスを導入する。
ここで導入されたランダム行列は、ガウス直交アンサンブル(GOE)の3つの重要な方法で異なる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A class of 2 X 2 random-matrix models is introduced for which the Brody distribution is the exact eigenvalue spacing distribution. The matrix elements consist of constrained sums of an exponential random variable raised to various powers that depend on the Brody parameter. The random matrices introduced here differ from those of the Gaussian Orthogonal Ensemble (GOE) in three important ways: the matrix elements are not independent and identically distributed (i.e., not IID) nor Gaussian-distributed, and the matrices are not necessarily real and/or symmetric. The first two features arise from dropping the classical independence assumption, and the third feature stems from dropping the quantum-mechanical conditions that are imposed in the construction of the GOE. In particular, the hermiticity condition, which in the present model, is a sufficient but not necessary condition for the eigenvalues to be real, is not imposed. Consequently, complex non-Hermitian 2 X 2 random matrices with real or complex eigenvalues can also have spacing distributions that are intermediate between those of the Poisson and Wigner classes. Numerical examples are provided for different types of random matrices, including complex-symmetric matrices with real or complex-conjugate eigenvalues.
- Abstract(参考訳): ブロディ分布が正確な固有値間隔分布である 2 X 2 個のランダム行列モデルのクラスを導入する。
行列要素は、ブロディパラメータに依存する様々なパワーに上昇した指数確率変数の制約された和からなる。
ここで導入されたランダム行列は、ガウス直交アンサンブル(GOE)の3つの重要な方法で異なる: 行列要素は独立でなく、同分布(すなわち IID ではない)でもなく、ガウス分布でもなく、行列は必ずしも実あるいは対称ではない。
最初の2つの特徴は古典的な独立の前提を下げることから生じ、3つ目の特徴はGOEの構築で課される量子力学条件を落とすことに由来する。
特に、現在のモデルでは、固有値が実数となるのに十分だが必要ではないハーミシティ条件は課されない。
したがって、実あるいは複素固有値を持つ複素非エルミート 2 X 2 のランダム行列は、ポアソン級数とウィグナー級数の中間の間隔分布を持つことができる。
数値的な例は、実あるいは複素共役固有値を持つ複素対称行列を含む、異なる種類のランダム行列に対して提供される。
関連論文リスト
- Entrywise error bounds for low-rank approximations of kernel matrices [55.524284152242096]
切り抜き固有分解を用いて得られたカーネル行列の低ランク近似に対するエントリーワイド誤差境界を導出する。
重要な技術的革新は、小さな固有値に対応するカーネル行列の固有ベクトルの非局在化結果である。
我々は、合成および実世界のデータセットの集合に関する実証的研究により、我々の理論を検証した。
論文 参考訳(メタデータ) (2024-05-23T12:26:25Z) - A Result About the Classification of Quantum Covariance Matrices Based
on Their Eigenspectra [0.0]
このクラスの任意の固有スペクトルに対応する量子共分散行列の集合がシンプレクティック変換によって関連しているという性質を持つ非自明な固有スペクトルのクラスを見つける。
この性質を持つすべての非退化固有スペクトルは、このクラスに属しなければならず、そのような固有スペクトルの集合は非退化固有スペクトルのクラスと一致することを示す。
論文 参考訳(メタデータ) (2023-08-07T09:40:09Z) - $h(1) \oplus su(2)$ vector algebra eigenstates with eigenvalues in the
matrix domain [0.0]
行列領域において一般化ベクトルコヒーレント状態の部分集合を求める。
行列固有値パラメータの特別な選択のために、ハイゼンベルク・ワイル群に付随する行列を持ついわゆるベクトルコヒーレント状態を発見した。
論文 参考訳(メタデータ) (2023-01-25T18:10:01Z) - The Ordered Matrix Dirichlet for Modeling Ordinal Dynamics [54.96229007229786]
観測された動作タイプに潜伏状態のマッピングを行うための順序付き行列ディリクレ(OMD)を提案する。
OMD上に構築されたモデルでは、解釈可能な潜在状態を復元し、数ショット設定で優れた予測性能を示す。
論文 参考訳(メタデータ) (2022-12-08T08:04:26Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
一般確率論として量子論(QT)の定式化を導入するが、準観測作用素(QEOs)で表される。
区別不可能な粒子と識別不能な粒子の両方に対するQTをこの方法で定式化できることを示します。
古典的なダイスに対する有限交換可能な確率は、QTと同じくらい奇数であることを示す。
論文 参考訳(メタデータ) (2022-03-08T14:47:39Z) - When Random Tensors meet Random Matrices [50.568841545067144]
本稿では,ガウス雑音を伴う非対称次数-$d$スパイクテンソルモデルについて検討する。
検討したモデルの解析は、等価なスパイクされた対称テクシットブロック-ワイドランダム行列の解析に起因していることを示す。
論文 参考訳(メタデータ) (2021-12-23T04:05:01Z) - Test Set Sizing Via Random Matrix Theory [91.3755431537592]
本稿ではランダム行列理論の手法を用いて、単純な線形回帰に対して理想的なトレーニング-テストデータ分割を求める。
それは「理想」を整合性計量を満たすものとして定義し、すなわち経験的モデル誤差は実際の測定ノイズである。
本論文は,任意のモデルのトレーニングとテストサイズを,真に最適な方法で解決した最初の論文である。
論文 参考訳(メタデータ) (2021-12-11T13:18:33Z) - Single-particle eigenstate thermalization in quantum-chaotic quadratic
Hamiltonians [4.557919434849493]
量子カオス2次ハミルトニアンの単一粒子固有状態における局所および非局所作用素の行列要素について検討する。
対角行列要素は固有状態から固有状態への揺らぎを無くし、逆ヒルベルト空間次元に比例する分散を示す。
論文 参考訳(メタデータ) (2021-09-14T18:00:13Z) - Learning with Density Matrices and Random Features [44.98964870180375]
密度行列は、量子系の統計状態を記述する。
量子系の量子的不確実性と古典的不確実性の両方を表現することは強力な形式主義である。
本稿では,機械学習モデルのビルディングブロックとして密度行列をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2021-02-08T17:54:59Z) - On Random Matrices Arising in Deep Neural Networks: General I.I.D. Case [0.0]
本研究では, ニューラルネットワーク解析に係わる無作為行列の積の特異値分布について検討した。
我々は、[22] の結果を一般化するために、[22] の確率行列理論のテクニックの、より簡潔な別のバージョンを使用します。
論文 参考訳(メタデータ) (2020-11-20T14:39:24Z) - On Random Matrices Arising in Deep Neural Networks. Gaussian Case [1.6244541005112747]
本稿では,深部ニューラルネットワークの解析において生じるランダム行列の積の特異値の分布を扱う。
この問題は、近年の研究では、自由確率論の技術を用いて検討されている。
論文 参考訳(メタデータ) (2020-01-17T08:30:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。