論文の概要: deepFDEnet: A Novel Neural Network Architecture for Solving Fractional
Differential Equations
- arxiv url: http://arxiv.org/abs/2309.07684v1
- Date: Thu, 14 Sep 2023 12:58:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-15 14:45:19.979300
- Title: deepFDEnet: A Novel Neural Network Architecture for Solving Fractional
Differential Equations
- Title(参考訳): deepfdenet:分数微分方程式を解くための新しいニューラルネットワークアーキテクチャ
- Authors: Ali Nosrati Firoozsalari, Hassan Dana Mazraeh, Alireza Afzal Aghaei,
and Kourosh Parand
- Abstract要約: 各分数微分方程式では、未知の関数を近似するためにディープニューラルネットワークを用いる。
提案アーキテクチャは, 精度のよい分数差分方程式の異なる形式を解く。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The primary goal of this research is to propose a novel architecture for a
deep neural network that can solve fractional differential equations
accurately. A Gaussian integration rule and a $L_1$ discretization technique
are used in the proposed design. In each equation, a deep neural network is
used to approximate the unknown function. Three forms of fractional
differential equations have been examined to highlight the method's
versatility: a fractional ordinary differential equation, a fractional order
integrodifferential equation, and a fractional order partial differential
equation. The results show that the proposed architecture solves different
forms of fractional differential equations with excellent precision.
- Abstract(参考訳): 本研究の目的は,分数微分方程式を高精度に解く深層ニューラルネットワークのための新しいアーキテクチャを提案することである。
提案手法ではガウス積分則と$l_1$離散化手法が用いられる。
各方程式では、未知の関数を近似するためにディープニューラルネットワークが使用される。
分数次微分方程式は, 分数次常微分方程式, 分数次積分微分方程式, 分数次偏微分方程式の3つの形式について検討した。
その結果,提案手法は精度に優れた分数微分方程式の異なる形式を解くことがわかった。
関連論文リスト
- Neural Control Variates with Automatic Integration [49.91408797261987]
本稿では,任意のニューラルネットワークアーキテクチャから学習可能なパラメトリック制御関数を構築するための新しい手法を提案する。
我々はこのネットワークを用いて積分器の反微分を近似する。
我々はウォーク・オン・スフィア・アルゴリズムを用いて偏微分方程式を解くために本手法を適用した。
論文 参考訳(メタデータ) (2024-09-23T06:04:28Z) - A forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations [0.6040014326756179]
我々は、高次元非線形後方微分方程式(BSDEs)を解くための新しい前方微分深層学習アルゴリズムを提案する。
差分深度学習がラベルとその導関数を入力に対して効率的に近似できるという事実により、BSDE問題を差分深度学習問題に変換する。
アルゴリズムの主な考え方は、オイラー・丸山法を用いて積分を離散化し、3つのディープニューラルネットワークを用いて未知の離散解を近似することである。
論文 参考訳(メタデータ) (2024-08-10T19:34:03Z) - New Designed Loss Functions to Solve Ordinary Differential Equations
with Artificial Neural Network [0.0]
本稿では,人工知能を用いた微分方程式(DE)の解法について検討する。
第2節では損失関数は$ntextth$次常微分方程式(ODE)に一般化される
論文 参考訳(メタデータ) (2022-12-29T11:26:31Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Solving non-linear Kolmogorov equations in large dimensions by using
deep learning: a numerical comparison of discretization schemes [16.067228939231047]
非線形偏微分コルモゴロフ方程式は、幅広い時間依存現象を記述するのに有効である。
深層学習は、これらの方程式を高次元で解くために導入された。
本研究では, 観測された計算の複雑性に影響を与えることなく, 精度の向上が可能であることを示す。
論文 参考訳(メタデータ) (2020-12-09T07:17:26Z) - Symbolically Solving Partial Differential Equations using Deep Learning [5.1964883240501605]
本稿では、微分方程式の正確な解や近似解を生成するニューラルネットワーク手法について述べる。
他のニューラルネットワークとは異なり、我々のシステムは直接解釈できるシンボリック表現を返す。
論文 参考訳(メタデータ) (2020-11-12T22:16:03Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Learning To Solve Differential Equations Across Initial Conditions [12.66964917876272]
多くのニューラルネットワークに基づく偏微分方程式解法が定式化され、古典的解法よりも性能が同等であり、場合によってはさらに優れている。
本研究では,任意の初期条件に対する偏微分方程式の解を条件付き確率分布の学習として近似する問題を提案する。
論文 参考訳(メタデータ) (2020-03-26T21:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。