論文の概要: New Designed Loss Functions to Solve Ordinary Differential Equations
with Artificial Neural Network
- arxiv url: http://arxiv.org/abs/2301.00636v1
- Date: Thu, 29 Dec 2022 11:26:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 15:37:12.207492
- Title: New Designed Loss Functions to Solve Ordinary Differential Equations
with Artificial Neural Network
- Title(参考訳): ニューラルネットワークを用いた常微分方程式を解くための新しい設計損失関数
- Authors: Xiao Xiong
- Abstract要約: 本稿では,人工知能を用いた微分方程式(DE)の解法について検討する。
第2節では損失関数は$ntextth$次常微分方程式(ODE)に一般化される
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the use of artificial neural networks (ANNs) to solve
differential equations (DEs) and the construction of the loss function which
meets both differential equation and its initial/boundary condition of a
certain DE. In section 2, the loss function is generalized to $n^\text{th}$
order ordinary differential equation(ODE). Other methods of construction are
examined in Section 3 and applied to three different models to assess their
effectiveness.
- Abstract(参考訳): 本稿では、微分方程式(DE)の解法として人工知能ニューラルネットワーク(ANN)を用いることと、あるDEの微分方程式とその初期/境界条件の両方を満たす損失関数の構成について検討する。
第2節では、損失関数は$n^\text{th}$order ordinary differential equation (ode) に一般化される。
その他の工法は第3節で検討され、その効果を評価するために3つの異なるモデルに適用される。
関連論文リスト
- deepFDEnet: A Novel Neural Network Architecture for Solving Fractional
Differential Equations [0.0]
各分数微分方程式では、未知の関数を近似するためにディープニューラルネットワークを用いる。
提案アーキテクチャは, 精度のよい分数差分方程式の異なる形式を解く。
論文 参考訳(メタデータ) (2023-09-14T12:58:40Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - DEQGAN: Learning the Loss Function for PINNs with Generative Adversarial
Networks [1.0499611180329804]
本研究は、生成逆数ネットワークを用いた微分方程式の解法である微分方程式GAN(DEQGAN)を提案する。
DeQGAN は PINN よりも 平均二乗誤差が桁違いに小さくなることを示す。
また、DECGANは、一般的な数値法と競合する解の精度を達成できることを示す。
論文 参考訳(メタデータ) (2022-09-15T06:39:47Z) - Stochastic Scaling in Loss Functions for Physics-Informed Neural
Networks [0.0]
訓練されたニューラルネットワークは普遍関数近似器として機能し、新しい方法で微分方程式を数値的に解くことができる。
従来の損失関数とトレーニングパラメータのバリエーションは、ニューラルネットワーク支援ソリューションをより効率的にする上で有望であることを示している。
論文 参考訳(メタデータ) (2022-08-07T17:12:39Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Learning To Solve Differential Equations Across Initial Conditions [12.66964917876272]
多くのニューラルネットワークに基づく偏微分方程式解法が定式化され、古典的解法よりも性能が同等であり、場合によってはさらに優れている。
本研究では,任意の初期条件に対する偏微分方程式の解を条件付き確率分布の学習として近似する問題を提案する。
論文 参考訳(メタデータ) (2020-03-26T21:29:22Z) - FiniteNet: A Fully Convolutional LSTM Network Architecture for
Time-Dependent Partial Differential Equations [0.0]
我々は、PDEのダイナミクスを利用するために、完全に畳み込みLSTMネットワークを使用する。
ベースラインアルゴリズムと比較して,ネットワークの誤差を2~3倍に削減できることを示す。
論文 参考訳(メタデータ) (2020-02-07T21:18:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。