論文の概要: Improving physics-informed DeepONets with hard constraints
- arxiv url: http://arxiv.org/abs/2309.07899v1
- Date: Thu, 14 Sep 2023 17:48:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-15 11:53:16.243221
- Title: Improving physics-informed DeepONets with hard constraints
- Title(参考訳): ハード制約による物理インフォームドDeepONetsの改良
- Authors: R\"udiger Brecht, Dmytro R. Popovych, Alex Bihlo and Roman O. Popovych
- Abstract要約: 本稿では,現在の物理インフォームドディープラーニング戦略を改善することを提案する。
提案手法は,DeepONetを複数回適用して解を段階的に適用した場合,その関数が連続的であることを保証している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current physics-informed (standard or operator) neural networks still rely on
accurately learning the initial conditions of the system they are solving. In
contrast, standard numerical methods evolve such initial conditions without
needing to learn these. In this study, we propose to improve current
physics-informed deep learning strategies such that initial conditions do not
need to be learned and are represented exactly in the predicted solution.
Moreover, this method guarantees that when a DeepONet is applied multiple times
to time step a solution, the resulting function is continuous.
- Abstract(参考訳): 現在の物理インフォームドニューラルネットワーク(標準または演算子)は、解決しているシステムの初期状態の正確な学習に依存している。
対照的に、標準的な数値的手法はそのような初期条件を学習することなく発展させる。
本研究では, 初期条件を学習する必要がなく, 予測解に正確に表されるように, 現在の物理学的な深層学習戦略を改善することを提案する。
さらに、この方法では、DeepONetを複数回適用してソリューションをタイムステップする場合、結果の関数が連続的であることを保証します。
関連論文リスト
- Improving PINNs By Algebraic Inclusion of Boundary and Initial Conditions [0.1874930567916036]
AI for Science」は、AI技術を用いた基本的な科学的問題を解決することを目的としている。
本研究では、トレーニング対象のモデルを単にニューラルネットワークから非線形変換に変更する可能性について検討する。
これにより、損失関数の項数は標準のPINN損失よりも減少する。
論文 参考訳(メタデータ) (2024-07-30T11:19:48Z) - Exact Enforcement of Temporal Continuity in Sequential Physics-Informed
Neural Networks [0.0]
解アンザッツを用いて連続時間セグメント間の連続性を強制する手法を提案する。
この手法は、線形PDEと非線形PDEの両方を含む多くのベンチマーク問題に対して試験される。
提案手法を用いて行った数値実験により,従来のPINNとソフトコントラストの双方に対して,コンバージェンスと精度が優れていた。
論文 参考訳(メタデータ) (2024-02-15T17:41:02Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Solving differential equations using physics informed deep learning: a
hand-on tutorial with benchmark tests [0.0]
ディープラーニングとニューラルネットワークによる微分方程式の解法について再検討する。
トレーニングプロセスに最小限のデータを使用する可能性に焦点を当てます。
単純な方程式モデルに関するチュートリアルは、通常の微分方程式の方法の実践方法を説明している。
論文 参考訳(メタデータ) (2023-02-23T16:08:39Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
貯水池モデリングのためのハイブリッド物理に基づく機械学習手法を提案する。
この手法は、物理に基づく正則化を伴う一連の深い敵対的ニューラルネットワークアーキテクチャに依存している。
提案手法は,物理知識を機械学習アルゴリズムに応用するためのシンプルでエレガントな手法である。
論文 参考訳(メタデータ) (2020-01-15T08:20:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。